1887

Abstract

Summary

A new approach based on the statistical associating fluid theory (SAFT) is presented here to model eight light crudes, with the SARA analysis as the only input for the model. Within the characterization procedure of Punnapala and Vargas (2013), the aromaticity parameter and the asphaltene molecular weight were fixed to all crude oil samples, while the asphaltene aromaticity is the only fitted parameter of the model. A correlation for this parameter with the flashed gas molecular weight allows full predictions of the phase behavior without the need of any asphaltene onset data. The predictive molecular model was used to study asphaltene instability as a function of injected CO and natural gas concentration. The model can also accurately reproduce routine PVT experiments such as constant composition expansion, differential vaporization and multi-stage separation tests performed on the crude oils, thereby providing a unified framework for phase behavior studies.

Loading

Article metrics loading...

/content/papers/10.1190/RDP2018-41463673.1
2018-05-09
2024-04-23
Loading full text...

Full text loading...

References

  1. AbdallahD.
    , 2012, Abu Dhabi International Petroleum Conference and Exhibition. Society of Petroleum Engineers, SPE-162190.
    [Google Scholar]
  2. AbutaqiyaMI, PanugantiSR, VargasFM.
    , 2017, Ind. Eng. Chem. Res.
    [Google Scholar]
  3. AlHammadiAA, VargasFM, ChapmanWG.
    , 2015, Energy Fuels, 2864–2875.
    [Google Scholar]
  4. AryaA, LiangX, von SolmsN, KontogeorgisGM.
    , 2016, Energy Fuels, 6835–6852.
    [Google Scholar]
  5. BadreS, GoncalvesCC, NorinagaK, GustavsonG, MullinsOC.
    , 2006, Fuel, 1–11.
    [Google Scholar]
  6. BarreraD, OrtizD, YarrantonH.
    , 2013, Energy Fuels, 2474–2487.
    [Google Scholar]
  7. BarkerJA, HendersonD.
    , 1967, J. Chem. Phys., 4714–4721.
    [Google Scholar]
  8. BoublíkT.
    , 1970, J. Chem. Phys., 471–2.
    [Google Scholar]
  9. BuckleyJ, HirasakiG, LiuY, Von DrasekS, WangJ, GillB.
    , 1998, Pet. Sci. Technol., 251–285.
    [Google Scholar]
  10. BoekES, YakovlevDS, HeadenTF.
    , 2009, Energy Fuels, 1209–1219.
    [Google Scholar]
  11. Buenrostro-GonzalezE, GroenzinH,Lira-GaleanaC, MullinsOC.
    , 2001, Energy Fuels, 972–978.
    [Google Scholar]
  12. BuchL, GroenzinH, Buenrostro-GonzalezE, AndersenSI, Lira-GaleanaC, MullinsOC.
    , 2003, Fuel, 1075–1084.
    [Google Scholar]
  13. CreekJL.
    , 2005, Energy Fuels, 1212–1224.
    [Google Scholar]
  14. ChapmanWG, JacksonG, GubbinsKE.
    , 1988, Mol. Phys., 1057–1079.
    [Google Scholar]
  15. ChapmanWG, GubbinsKE, JacksonG, RadoszM.
    , 1989, Fluid Phase Equilib., 31–38.
    [Google Scholar]
  16. , 1990, Ind. Eng. Chem. Res., 1709–1721.
    [Google Scholar]
  17. CzarneckiJ.
    , Energy Fuels, 2008, 1253–1257.
    [Google Scholar]
  18. DemirAB.
    , 2016, PhD Dissertation. West Virginia University.
    [Google Scholar]
  19. David Ting P, HirasakiGJ, ChapmanWG.
    , 2003, Pet. Sci. Technol., 647–661.
    [Google Scholar]
  20. FloryPJ.
    , J. Chem. Phys., 1942, 51–61.
    [Google Scholar]
  21. GrossJ, SadowskiG.
    2001, Ind. Eng. Chem. Res., 1244–1260.
    [Google Scholar]
  22. 2002, Ind. Eng. Chem. Res., 5510–5515.
    [Google Scholar]
  23. GoualL.
    , 2009, Energy Fuels, 2090–2094.
    [Google Scholar]
  24. GonzalezDL, HirasakiGJ, CreekJ, ChapmanWG.
    , 2007, Energy Fuels, 1231–1242.
    [Google Scholar]
  25. HugginsML.
    , 1941, J. Chem. Phys., 440.
    [Google Scholar]
  26. HortalAR, HurtadoP, Martínez-HayaB, MullinsOC.
    , 2007, Energy Fuels, 2863–2868.
    [Google Scholar]
  27. HerodAA, BartleKD, KandiyotiR.
    , 2007, Energy Fuels, 2176–2203.
    [Google Scholar]
  28. Hildebrand JH. J.
    , 1919, Am. Chem. Soc., 1067–1080.
    [Google Scholar]
  29. KontogeorgisGM, VoutsasEC, YakoumisIV, TassiosDP.
    , 1996, Ind. Eng. Chem. Res., 4310–4318.
    [Google Scholar]
  30. LesueurD.
    , 2009, Adv. Colloid Interface Sci., 42–82.
    [Google Scholar]
  31. MansooriG, CarnahanN, StarlingK, Leland Jr T.
    , 1971, J. Chem. Phys., 1523–1525.
    [Google Scholar]
  32. MullinsOC, Martínez-HayaB, MarshallAG. C
    , 2008, Energy Fuels, 1765–1773.
    [Google Scholar]
  33. PunnapalaS, Vargas FM.
    , 2013, Fuel, 417–429.
    [Google Scholar]
  34. PedersenKS, ChristensenPL, ShaikhJA.
    , 2014, Boca Raton, FL: CRC Press.
  35. PanugantiSR, VargasFM, GonzalezDL, KurupAS, ChapmanWG.
    , 2012, Fuel, 658–669.
    [Google Scholar]
  36. ScatchardG.
    , 1931, Chem. Rev., 321–333.
    [Google Scholar]
  37. ScottRL, MagatM.
    , 1945, J. Chem. Phys., 172–177.
    [Google Scholar]
  38. SoaveG.
    , 1972, Chem. Eng. Sci., 1197–1203.
    [Google Scholar]
  39. SpeightJG.
    , 2014, The chemistry and technology of petroleum. Boca Raton, FL: CRC Press.
  40. TangX, GrossJ.,
    2010, Fluid Phase Equilib., 11–21.
    [Google Scholar]
  41. VargasFM, GonzalezDL, CreekJL, WangJ, BuckleyJ, HirasakiGJ, et al.
    , 2009, Energy Fuels, 1147–1154.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.1190/RDP2018-41463673.1
Loading
/content/papers/10.1190/RDP2018-41463673.1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error