1887
PDF

Abstract

The importance of recording the full range of frequencies (low as well as high) is widely accepted. High-fidelity, low-frequency data provides better penetration for the clear imaging of deep targets, as well as providing greater stability in seismic inversion. Broader bandwidths produce sharper wavelets and both low and high frequencies are required for high-resolution imaging of important features such as thin beds and stratigraphic traps. The industry has been facing many issues that have limited the performance of marine seismic surveys with respect to bandwidth. Among them, we find mechanical and acoustic noise, source and receiver ghosts and attenuation with depth. Until recently, conventional de-ghosting was found to be sub-optimal. Thanks to recent advances in technology and also in operational capabilities, we have seen several improvements, in particular with the use of solid streamers, deep towing and notch diversity. We describe a different technique to achieve broadband marine streamer data. The proposed<br>solution is a new combination of streamer equipment, novel streamer towing techniques, and a new de-ghosting and imaging technology. It uses receiver notch diversity to yield a broadband spectrum and takes full advantage of the low noise and low-frequency response of the new generation of solid streamers. As a result, the method creates an exceptionally sharp and clean wavelet for interpretation. It can be tuned for different water depths, target depths and desired output spectra.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609-pdb.251.43
2011-07-03
2024-04-19
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609-pdb.251.43
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error