1887

Abstract

mpletions rely on a sliding sleeve activated by a ball dropped from surface. Each ball travels the length of the lateral well to its intended operational depth, at which it meets a mated seat and isolates the wellbore below. Once the ball is in position, the sliding sleeve opens via the hydraulic force on the ball and seat, allowing a fracturing stage to commence. This dual function of the ball—activation and sealing—is of extreme importance for the stimulation treatment process. If the ball fails, it will result in bypassed pay zones and unintentional refracturing of previously stimulated zones. Although sometimes surface pressures can be used to infer ball behavior, often the pressure signals observed at surface cannot guarantee successful ball performance. This paper will present an extensive study of ball performance under pressure for the most common ball materials in the industry. Phenolic, composite and metal alloy materials were explored with the pros and cons for each investigated. In particular three main areas were analyzed: 1) molding, layering and extrusion of material versus inconsistencies in ball performance; 2) ball deformation at high pressure versus pressure required to bring the ball off seat; and 3) comparison of the performance of phenolic, composite and metal alloy materials for ball fabrication and their performance at high temperature. Manufacturing variability is also explored on this paper. The impact on the manufacturing process on the performance of balls made of the same material is presented by means of laboratory experimentation. The conclusions from this paper provide operators the necessary information to consider when making completion and ball material decisions in their field operations. In particular, the results of this testing may illuminate some previously unexplainable occurrences in graduated ball sliding-sleeve systems. This testing clarified that not all fracturing balls pumped in horizontal wells perform equivalently under wellbore fracture conditions.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609-pdb.350.iptc16493
2013-03-26
2024-04-20
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609-pdb.350.iptc16493
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error