1887

Abstract

The formations of DaQing gas field are mainly volcanic reservoirs which have the characteristics of low permittivity and complex formation structures. Most of these wells need fracturing remodeling to meet the standards of industrial gas stream, and also, the gas productivity tests as well as the pressure recovery tests conducted on these wells are different from other regular gas reservoirs. Considering the nature of the volcanic reservoir, such as dissolution pores, karsts caves, natural fracture development, we built two mathematical models of dissolution pores development and natural fracture development under both of the Darcy flow conditions and Non-Darcy flow conditions separately to predict the production of triple porosity reservoir after gas reservoir well fractures. By using the Laplace transform and numerical inversion, the equation to calculate production of complex volcanic gas wells is obtained. Based on these researches, law of volcanic reservoir productivity is investigated. The theoretical data are compared with the practical data collected from the field operation. The comparison results reveal how the parameter of the fluid volume, proppant indexes, and conductivity of artificial fracturing induced fractures and length of fractures change affect the productivity. The research work reported in this paper provides theoretical support on the optimization method of fractured wells design of volcanic gas reservoir.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609-pdb.350.iptc16619
2013-03-26
2024-04-20
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609-pdb.350.iptc16619
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error