1887

Abstract

Recently a combined application of two technologies, horizontal drilling and multi-stage massive hydraulic fracturing (HF) has made vast resources of shale gas commercially viable. The HF is a well-established reservoir stimulation technique, which has been developed over the last half century. There are reliable tools for designing HF in conventional reservoirs, in which a planar HF is assumed. On the contrary, in shale gas fracturing, micro-seismic observations have illuminated a complex internal structure resulting from the interaction of the induced hydraulic fractures with natural fractures. It is widely speculated that the stimulated natural fractures make a significant contribution to the gas production. The mechanics of the interaction between multiple fractures during a HF treatment is very complicated. In this paper we present the results of state-of-the-art modeling of an explicit interaction between a propagating hydraulic fracture and a statistically generated discrete fracture network. A sensitivity study reveals a number of interesting observations including importance of initial fracture conductivity for growth of the fracture system, effect of the dilation angle on the generated conductivity and net pressure and uneven distribution of fracture aperture that is critical for proppant placement. This work strongly links the production technology and geomechanics and suggests an approach for modeling and designing HF treatments in unconventional shale gas plays.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609-pdb.350.iptc17073
2013-03-26
2024-04-24
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609-pdb.350.iptc17073
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error