1887

Abstract

Downhole determination of hydrocarbon phase is a significant subsurface challenge in many highly depleted fields. Reservoir production results in fluid compositional changes and variable hydrocarbon saturation distributions. Standard petrophysical techniques such as analysis of density and neutron porosity logs can give misleading results under such conditions. Most commonly, oil reservoirs can display a neutron-density response indicative of gas. There is significant business impact in error of hydrocarbon phase determination. Mistakes can lead to poor completion decisions, incorrect reserves estimation and suboptimal well and reservoir management. The fluid phase uncertainty resulting from interpretation of standard Logging While Drilling (LWD) datasets can be unacceptably high. Additional tools or techniques are therefore required. Downhole fluid sampling is one such technique. It is routinely and successfully acquired in exploration and appraisal wells and gives robust fluid phase determination. However, it is not economically feasible for frequent acquisition for in-fill production wells where low cost LWD acquisition is the norm. In addition, overbalanced wells drilled through highly depleted reservoirs lead to acquisition risk in stationary openhole logging techniques. Advanced Mud Gas logging (AMG) is an established tool for delivering real-time quantitative fluid composition in exploration, appraisal and early production wells. However, successful applications in highly depleted fields have not been published as AMG analysis can be complicated by compositional changes. In this paper we present a case study calibration of AMG with downhole fluid samples resulting in a robust, cost effective and safe tool for improved hydrocarbon phase determination in depleted reservoirs.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609-pdb.350.iptc17088
2013-03-26
2021-10-25
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609-pdb.350.iptc17088
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error