1887

Abstract

We imaged a sandstone at connate water saturation, residual waterflood oil saturation, residual surfactant flood oil saturation and residual polymer flood oil saturation at high resolution in 3D with a micro-computed tomograph. We measured oil saturations, porosities, residual oil cluster size distributions and oil cluster surface areas on each image. We found that the waterflood and polymer flood reduced the oil saturations significantly (from 68.4% initial oil in place to 38.3% after waterflooding and 28.5% after polymer flooding). The surfactant flood was ineffective, which is probably due to the formulation we used and/or the fluid equilibration times we applied. The residual oil cluster size distributions and cluster surface area-volume relationships followed power-law relations, consistent with previous experimental measurements. We conclude that micro-computed tomography can enhance understanding of pore-scale fluid dynamics significantly.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609-pdb.395.IPTC-17312-MS
2014-01-19
2024-03-29
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609-pdb.395.IPTC-17312-MS
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error