1887

Abstract

Production of high salinity formation water with gas presents major operational and reservoir management challenges in gas reservoirs. Early detection of unexpected water production is critical for ensuring prompt action to prevent accelerated corrosion damage in surface pipelines and facilities if they are not designed to handle the produced brine. Several methods exist for detecting water in pipelines which are based on electrical, electromagnetic, and acoustic measurements. While most of the existing methods are intrusive requiring direct contact between the measurement probe and the flow stream, all such methods suffer from low accuracy of measurements and dependence on water composition and salinity. This paper reviews the various technologies that are in use to detect and measure water production. It also describes the theoretical background and the laboratory testing of a new means for detecting presence of formation water in gas flow lines.1-10 This work is part of a joint collaboration between RasGas Company Limited and Texas A&M University at Qatar (TAMUQ) aimed at developing a device which is: non-intrusive, clamp-on externally on the flow-line, accurate, and independent of saline water composition. This technology is based on neutron elastic-scattering and activation interactions. The laboratory testing is performed using simulated field conditions to determine the feasibility and accuracy of the measurement technique. Based on the laboratory results, a prototype device is planned to be constructed for field testing. Safety aspects of the process application both in the lab and in the field have been thoroughly examined and comprehensive safety measures have been developed and implemented per the health and safety regulatory requirements. The paper also presents the findings from a simulation study using the Monte Carlo N-Particle (MCNP5) neutron flux simulator11 to examine the feasibility of the proposed method and to properly design and optimize the experimental setup and procedure.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609-pdb.395.IPTC-17327-MS
2014-01-19
2024-04-20
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609-pdb.395.IPTC-17327-MS
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error