1887

Abstract

The Volga-Urals basin is one of the largest oil-producing regions in western Russia. The most prolific wells are producing from Devonian formations characterized by light crude oil with high bubblepoint pressure. Today, most of the Devonian reservoirs are depleted and produce at bottomhole flowing pressure below bubblepoint pressure, which yields multiphase and non-Darcy flow in hydraulic fractures, drastically decreasing production. As a result, conventional hydraulic fracturing treatments are less effective. To regain fracturing treatment efficiency, the restrictions to hydrocarbon flow inside the fracture must be minimized. To account for this, a new method of fracture conductivity generation was introduced. Channel fracturing creates open pathways inside the fracture, enabling infinite fracture conductivity. Channels are created by discontinuous proppant feeding at surface into viscous fracturing fluid. Dissolvable fibers are added to the slurry to separate proppant structures and prevent them from settling during treatment. Proppant structures act as bridges inside fractures; voids between them are essentially stable channels connected along the entire length of the fracture. While channel fracturing has already been implemented successfully in many places around the world, the fracturing conditions of Volga-Urals Devonian formations were still new for this technology. The Volga-Urals region is well known for high tectonic stresses and low fracturing-fluid efficiency. While channel fracturing treatments are being designed and pumped in a regime without tip-screenout (TSO) in other locations, channel fracturing treatments in Devonian formations often showed significant TSO. Production analyses showed consistent productivity increases, and in most cases, 2 folds higher compared with offset wells where conventional fracturing technology was used. After the success of the pilot campaign, proppant flowback was resolved by incorporating a rod-shaped proppant as a tail-in stage of channel fracturing schedules. The nonspherical shape of the proppant increases internal friction between the particles and mechanically holds them in place. In addition to improving proppant flowback control, the combination of technologies maximized conductivity of the near-wellbore area which connects channels and the wellbore. The success of more than 30 of such fracturing treatments expanded the pool of candidates for channel fracturing with rod-shaped proppant to meet the challenges of similar complex geological conditions.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609-pdb.395.IPTC-17409-MS
2014-01-19
2020-06-01
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609-pdb.395.IPTC-17409-MS
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error