1887

Abstract

Abstract

The aim of this work is to deploy a new SQUID (Superconducting Quantum interference device) based instrument for the measurement of the full magnetic gradient tensor of the Earth’s magnetic field in survey scenarios in a sedimentary basin in Thuringia, a local province in Germany. This task requires developing according processing, inversion, and interpretation techniques for this new instrument. The recent state of the instrument and data processing techniques is presented.

The new instrument has several advantages compared to commercially available high-resolution aeromagnetic survey instruments. Besides the fact that weaker magnetic anomalies could be detected, it delivers vector data and thus more detailed information even on remanence of the geologic structures. It is required for more enhanced magnetic anomaly delineation and possibly for the determination of the age of intrusive or alteration structures. As a proof of principle a small-scaled magnetic anomaly on the border of the Thuringian basin was selected. The area was mapped in 2013. The results are presented and preliminary results of the inversion discussed which indicate remanent magnetization of the rocks which cause the magnetic anomaly.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201411992
2015-03-27
2020-06-02
Loading full text...

Full text loading...

References

  1. Andreas, D.; Voland; B.
    , 2010, Der Dolerit der Höhenberge - Teil eines eigenständigen Höhenberg-Intrusionsintervalls - sein Gesamtprofil in der Bohrung Schnellbach 1/62 und die Einordnung der Intrusion in den Ablauf der Rotliegendentwicklung des Thüringer Waldes: Beitr. Geol. Thüringen, S.23–82.
    [Google Scholar]
  2. Čuma, M.; Wilson, G. A.; Zhdanov, M. S.
    , 2012, Large-scale 3D inversion of potential field data: Geophysical Prospecting60(6), 1186–1199.
    [Google Scholar]
  3. Eschner, W.; Ludwig, W.
    , 1995, Planar gradiometers arranged on non-parallel surfaces for determination of a gradient tensor of a magnetic field: US patent of Dornier GmbH, publication number: US5469056.
    [Google Scholar]
  4. FitzGerald, D. J.; Holstein, H.
    , 2006, Innovative data processing methods for gradient airborne geophysical data sets: Innovative data processing methods for gradient airborne geophysical data sets, 25(1), 87–94. doi: 10.1190/1.2164762.
    https://doi.org/10.1190/1.2164762 [Google Scholar]
  5. Foss, C.
    , 2006, The improvements in source resolution that can be expected from inversion of magnetic field tensor data: The Leading Edge, 25, 81–84. doi:10.1190/1.2164761.
    https://doi.org/10.1190/1.2164761 [Google Scholar]
  6. Koch, R. H.; Rozen, J. R.; Sun, J. Z.; Gallagher, W.J.
    , 1993, Three SQUID gradiometer: Appl. Phys. Lett., 63, 403–405.
    [Google Scholar]
  7. Nabighian, M. S.; and Asten, M. W.
    , 2002, Metalliferous mining geophysics — State of the art in the last decade of the 20th century and the beginning of the new millennium: Geophysics, 67, 964–978.
    [Google Scholar]
  8. Pedersen, L. B., and Rasmussen, T. M.
    , 1990, The gradient tensor of potential field anomalies: some implications on data collection and data processing of maps: Geophysics, 55, 1558–1566.
    [Google Scholar]
  9. Schiffler, M.; Queitsch, M.; Stolz, R.; Chwala, A.; Krech, W.; Meyer, H.-G.; Kukowski, N.
    , 2014, Calibration of SQUID vector magnetometers in full tensor gradiometry systems: Geophysical Journal International198(2), 954–964.
    [Google Scholar]
  10. Schiffler, M.; Queitsch, M.; Stolz, R.; Meyer, H.-G.; Kukowski, N.
    , 2015, Application of Hilbert transforms for enhanced processing of full tensor magnetic gradient data: in review with Geophysical Prospecting.
    [Google Scholar]
  11. Schmidt, P. W.; and Clark, D. A.
    , 2006, The magnetic gradient tensor: its properties and uses in source characterization: The Leading Edge, 25, 75–78. doi:10.1190/1.2164759.
    https://doi.org/10.1190/1.2164759 [Google Scholar]
  12. Schoenau, T.; Schmelz, M.; Zakosarenko, V.; Stolz, R.; Meyer, M.; Anders, S.; Fritzsch, L.; Meyer, H.-G.
    , 2013, SQUID-based setup for the absolute measurement of the Earth’s magnetic field: Superconductor Science & Technology, 26 (3), 035013, doi:10.1088/0953‑2048/26/3/035013.
    https://doi.org/10.1088/0953-2048/26/3/035013 [Google Scholar]
  13. Stolz, R.; Fritzsch, L.; Meyer, H.-G.
    , 1999, LTS SQUID sensor with a new configuration: Supercond. Sci. Technol.12(11), 806–808, http://iopscience.iop.org/0953-2048/12/11/334/pdf/0953-2048_12_11_334.pdf.
    [Google Scholar]
  14. Tilbrook, D. L.
    , 2004, The design of a new concept HTSC axial gradiometer: Physica C: Superconductivity, 407, 1–9. doi:10.1016/j.physc.2004.04.025.
    https://doi.org/10.1016/j.physc.2004.04.025 [Google Scholar]
  15. Tristan Technologies Inc.
    Tristan Technologies Inc., 2015, Manual T877, San Diego (CA), http://www.tristantech.com/pdf/T877.pdf, (accessed 06 February 2015).
    [Google Scholar]
  16. Vallée, M.A.; Smith, R.S.; Keating, P.
    , 2011, Metalliferous mining geophysics: state of the art after a decade in the new millennium: Geophysics, 76, W31–W50.
    [Google Scholar]
  17. Veryaskin, A. V.
    , 2001, Magnetic gradiometry: a new method for magnetic gradient measurement: Sensors and Actuators A: Physical, 91, 233–235. doi:10.1016/S0924‑4247(01)00489‑7.
    https://doi.org/10.1016/S0924-4247(01)00489-7 [Google Scholar]
  18. Wiegert, R.; Oeschger, J.; Tuovila, E.
    , 2007, Demonstration of a novel man-portable magnetic STAR technology for real time localization of unexploded ordnance: Proceedings of MTS/IEEE Oceans 2007, 1–7. doi:10.1109/OCEANS.2007.4449229.
    https://doi.org/10.1109/OCEANS.2007.4449229 [Google Scholar]
  19. Wynn, W.; Frahm, C.; Carroll, P.; Clark, R.; Wellhoner, J.; Wynn, M.
    , 1975, Advanced superconducting gradiometer/Magnetometer arrays and a novel signal processing technique: IEEE Trans. on Magnetics, vol.11 (2), 701–707, doi: 10.1109/TMAG.1975.1058672.
    https://doi.org/10.1109/TMAG.1975.1058672 [Google Scholar]
  20. Zhdanov, M. S.
    , 2002, Geophysical inverse theory and regularization problems: Methods in geochemistry and geophysics 36, Elsevier Science, Amsterdam, Oxford.
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201411992
Loading
/content/papers/10.3997/2214-4609.201411992
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error