Full text loading...
-
Fast “Online” Migration with Compressive Sensing
- Publisher: European Association of Geoscientists & Engineers
- Source: Conference Proceedings, 77th EAGE Conference and Exhibition 2015, Jun 2015, Volume 2015, p.1 - 5
Abstract
We present a novel adaptation of a recently developed relatively simple iterative algorithm to solve large-scale sparsity-promoting optimization problems. Our algorithm is particularly suitable to large-scale geophysical inversion problems, such as sparse least-squares reverse-time migration or Kirchoff migration since it allows for a tradeoff between parallel computations, memory allocation, and turnaround times, by working on subsets of the data with different sizes. Comparison of the proposed method for sparse least-squares imaging shows a performance that rivals and even exceeds the performance of state-of-the art one-norm solvers that are able to carry out least-squares migration at the cost of a single migration with all data.