1887

Abstract

Summary

In recent years there has been increasing interest in the study of so-called ambient noise seismic interferometry. This method is used to extract meaningful information from long recordings (hours to days) of ambient seismic noise. This meaningful information is extracted in the form of wavefields propagating between those receiver positions at which the noise was recorded, i.e., as if a source had been placed at one of those locations - a so-called “virtual source”. The method has found most success in global/regional seismology where low-frequency (sub-1 Hz) fundamental mode surface waves are extracted by cross-correlating months of ambient noise recorded on two or more receiver stations. Whereas the most successful applications of the method have been in recovering surface waves propagating between receiver locations, other successful applications have seen the recovery of body waves. Another very appealing aspect of the ambient noise interferometry is the possibility to use it for time-lapse or continuous un-invasive monitoring of the subsurface properties.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201413457
2015-06-01
2020-04-02
Loading full text...

Full text loading...

References

  1. Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R., & Larose, E.
    , [2008a] Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations, Science, 321(5895), 1478.
    [Google Scholar]
  2. Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian, A.
    , [2008b] Towards forecasting volcanic eruptions using seismic noise, Nature Geoscience, 1, 126–130, doi:10.1038/ngeo104.
    https://doi.org/10.1038/ngeo104 [Google Scholar]
  3. de Ridder, S., and and B.L.Biondi
    , [2013] Daily reservoir-scale subsurface monitoring using ambient seismic noise; Geophys. Res. Lett., 40, 1–6, doi:10.1002.
    https://doi.org/10.1002 [Google Scholar]
  4. de Ridder, S.A.L., B.L.Biondi, and R.G.Clapp
    , [2014] Time-lapse seismic noise correlation tomography at Valhall, Geophys. Res. Lett., 41, 6116–6122, doi:10.1002/2014GL061156.
    https://doi.org/10.1002/2014GL061156 [Google Scholar]
  5. Draganov, D., X.Campman, J.Thorbecke, A.Verdel, and K.Wapenaar
    , [2013] Seismic exploration-scale velocities and structure from ambient seismic noise (> 1 Hz), J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50339.
    https://doi.org/10.1002/jgrb.50339 [Google Scholar]
  6. LinF.C., RitzwollerM.H., SniederR.
    [2009] Eikonal Tomography: Surface wave tomography by phase-front tracking across a regional broad-band seismic array. Geophys. J. Int., doi: 10.1111/j.1365‑246X.2009.04105.x.
    https://doi.org/10.1111/j.1365-246X.2009.04105.x [Google Scholar]
  7. LinF.C., RitzwollerM.H., YangY., MoschettiM.P., FouchM.J.
    [2011] Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States, Nature Geoscience, 4, 55-61, doi:10.1038/ngeo1036.
    https://doi.org/10.1038/ngeo1036 [Google Scholar]
  8. Mordret, A., Landès, M., Shapiro, N., Singh, S., Roux, P., & Barkved, O.
    [2013a] Near-surface study at the valhall oil field from ambient noise surface wave tomography, Geophys. J. Int., 193(3), 1627– 1643. 88, 89, 99, 101, 103, 112, 116, 120, 154, 156.
    [Google Scholar]
  9. Mordret, A., Shapiro, N.M., Singh, S.C., Roux, P. and Barkved, O.I.
    [2013b] Helmholtz tomography of ambient noise surface wave data to estimate Scholte wave phase velocity at Valhall Life of the Field, Geophysics, 78(2), WA99-WA109. 113, 114, 115, 130, 132, 138, 150, 160, 163.
    [Google Scholar]
  10. Mordret, A., Shapiro, N. M., Singh, S., Roux, P., Montagner, J.-P., & Barkved, O.
    , 2013c. Azimuthal anisotropy at Valhall : The Helmholtz equation approach, Geophys. Res. Lett., 40. 151, 165.
    [Google Scholar]
  11. Mordret, A., M.Landès, N.M.Shapiro, S.C.Singh, and P.Roux
    , [2014a] Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: depth inversion with a Neighbourhood Algorithm, Geophys. J. Int., 198(3), 1514–1525, doi: 10.1093/gji/ggu217.
    https://doi.org/10.1093/gji/ggu217 [Google Scholar]
  12. Mordret, A., N. M.Shapiro, and S.Singh
    , [2014b] Seismic noise-based time-lapse monitoring of the Valhall overburden, Geophys. Res. Lett., 41, 4945–4952, doi:10.1002/2014GL060602.
    [Google Scholar]
  13. Mordret, A., D.Rivet, M.Landès, and N. M.Shapiro
    , [2015] Three-dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion Island) from ambient seismic noise, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2014JB011654.
    https://doi.org/10.1002/2014JB011654 [Google Scholar]
  14. NishidaK., MontagnerJ.P., KawakatsuH.
    [2009] Global Surface wave tomography Using Seismic Hum, Science, 326, 5949, 112, doi:10.1126/science1176389.
    https://doi.org/10.1126/science1176389 [Google Scholar]
  15. Poupinet, G., Ellsworth, W. and Frechet, J.
    [1984] Monitoring velocity variations in the crust using earthquake doublets : An application to the Calaveras fault, California, J. Geophys. Res. Solid Earth, (1978-2012), 89(B7), 5719–5731.
    [Google Scholar]
  16. RitzwollerM.H., LinF.C., ShenW.
    [2011] Ambient noise tomography with a large seismic array, C. R. Geoscience, doi:10.1016/j.crte.2011.03.007.
    https://doi.org/10.1016/j.crte.2011.03.007 [Google Scholar]
  17. Sens-SchönfelderC., WeglerU.
    [2006] Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett., 33, L21302.
    [Google Scholar]
  18. Shapiro, N.M. and Campillo, M.
    [2004] Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31, 1615–1619. 2
    [Google Scholar]
  19. Shapiro, N.M., Campillo, M., Stehly, L. and Ritzwoller, M.
    [2005] High-resolution surface-wave tomography from ambient seismic noise, Science, 307(5715), 1615.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201413457
Loading
/content/papers/10.3997/2214-4609.201413457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error