1887

Abstract

Summary

Beside geophysical applications from the near-surface to global scale, seismic full waveform inversion (FWI) can be applied to ultrasonic data on the centimeter and decimeter scale for non-destructive testing (NDT) of pavements, facades, plaster, sculptures and load-bearing structures like pillars. Classical NDT approaches are based on the inversion of body-wave travel-times to deduce P-wave velocity models. In contrast, surface waves (Rayleigh or Love waves) are well suited to quantify superficial alterations of material properties, e.g. due to weathering. In this paper we demonstrate the potential of 2D Rayleigh waveform inversion on the ultrasonic scale using a very low coverage acquisition geometry consisting of 1 shot and a few dozen receiver positions. For a 2D elastic FWI with a passive visco-elastic modelling approach the resolution is illustrated using a ultrasonic field data example from the weathered facade of the Porta Nigra, a large Roman city gate from the 2nd century AD, in Trier (Germany).

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201413541
2015-06-01
2020-06-02
Loading full text...

Full text loading...

References

  1. Bretaudeau, F., Brossier, R., Leparoux, D., Operto, S., Abraham, O. and Virieux, J.
    [2013] 2D elastic full waveform imaging of the near surface : Application to a physical scale model. Near Surface Geophysics, 11(3), 307–316.
    [Google Scholar]
  2. Brossier, R.
    [2011] Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance. Computers & Geosciences, 37(4), 444 – 455.
    [Google Scholar]
  3. Choi, Y. and Alkhalifah, T.
    [2012] Application of multi-source waveform inversion to marine streamer data using the global correlation norm. Geophysical Prospecting, 60, 748–758.
    [Google Scholar]
  4. Dokter, E.
    [2015] 2D SH-waveform inversion for near-surface characterization: A case study from Slovakia. Diploma thesis, Kiel University.
    [Google Scholar]
  5. Dokter, E., Köhn, D., Wilken, D. and Rabbel, W.
    [2014] Application of Elastic 2D Waveform Inversion to a Near Surface SH-wave Dataset. In: 76th EAGE Conference and Exhibition 2014. Amsterdam, WE P01 12.
    [Google Scholar]
  6. Forbriger, T., Groos, L. and Schäfer, M.
    [2014] Line-source simulation for shallow-seismic data. Part 1: theoretical background. Geophysical Journal International, 198(3), 1387–1404.
    [Google Scholar]
  7. Groos, L.
    [2013] 2D full waveform inversion of shallow seismic Rayleigh waves. Ph.D. thesis, Karlsruhe Institute of Technology. Available at http://nbn-resolving.de/urn:nbn:de:swb:90-373206.
    [Google Scholar]
  8. Groos, L., Schäfer, M., Forbriger, T. and Bohlen, T.
    [2014] The role of attenuation in 2D full-waveform inversion of shallow-seismic body and Rayleigh waves. Geophysics, 79(6), R247–R261.
    [Google Scholar]
  9. Köhn, D., De Nil, D., Kurzmann, A., Przebindowska, A. and Bohlen, T.
    [2012] On the influence of model parametrization in elastic full waveform tomography. Geophysical Journal International, 191(1), 325–345.
    [Google Scholar]
  10. Kurzmann, A.
    [2012] Applications of 2D and 3D full waveform tomography in acoustic and viscoacous-tic complex media. Ph.D. thesis, Karlsruhe Institute of Technology (KIT). Available at http://nbn-resolving.de/urn:nbn:de:swb:90-344211.
    [Google Scholar]
  11. Kurzmann, A., Przebindowska, A., Köhn, D. and Bohlen, T.
    [2013] Acoustic full waveform tomography in the presence of attenuation: a sensitivity analysis. Geophysical Journal International, 195(2), 985–1000.
    [Google Scholar]
  12. Meier, T., Auras, M., Erkul, E., Fehr, M., Jepsen, K., Milde, C., Schulte-Kortnack, D., Spangenberg, E., Steinkraus, T. and Wilken, D.
    [2014] Physikalische Untersuchungen an der Porta Nigra - UltraschallOberflächen-Messungen und thermische Untersuchungen. Bericht Nr. 47, Institut für Steinkonservierung e. V., Mainz. 50–62.
    [Google Scholar]
  13. Nocedal, J. and Wright, S.
    [2006] Numerical Optimization. Springer, New York.
    [Google Scholar]
  14. Romdhane, A., Grandjean, G., Brossier, R., Rejiba, F., Operto, S. and Virieux, J.
    [2011] Shallow-structure characterization by 2D elastic full-waveform inversion. Geophsics, 76(3), R81–R93.
    [Google Scholar]
  15. Schäfer, M.
    [2014] Application of full-waveform inversion to shallow-seismic Rayleigh waves on 2D structures. Ph.D. thesis, Karlsruhe Institute of Technology. Available at http://nbn-resolving.org/urn:nbn:de:swb:90-419221.
    [Google Scholar]
  16. Schäfer, M., Groos, L., Forbriger, T. and Bohlen, T.
    [2014] Line-source simulation for shallow-seismic data. Part 2: full-waveform inversion – a synthetic 2-D case study. Geophysical Journal International, 198(3), 1405–1418.
    [Google Scholar]
  17. Tran, K., McVay, M., Faraone, M. and Horhota, D.
    [2013] Sinkhole detection using 2D full seismic waveform tomography. Geophysics, 78(5), R175–R183.
    [Google Scholar]
  18. Tran, K.T. and McVay, M.
    [2012] Site characterization using Gauss-Newton inversion of 2-D full seismic waveform in the time domain. Soil Dynamics and Earthquake Engineering, 43(0), 16 – 24.
    [Google Scholar]
  19. Virieux, J. and Operto, S.
    [2009] An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6),WCC1–WCC26.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201413541
Loading
/content/papers/10.3997/2214-4609.201413541
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error