1887

Abstract

Summary

Electromagnetic induction (EMI) methods are widely used for mapping soil properties at the field scale, including soil moisture (θ), with benefits for precision agriculture. Recent studies showed ambiguous results on the influence of θ on the measured bulk electrical conductivity (ECa). At the Schäfertal hillslope site (Germany), spatial distribution of soil properties as well as the spatial and temporal dynamics of θ patterns were studied in detail within an intensive hydrological monitoring. At the same time, repeated EMI surveys were conducted. with the aim to asses the suitability of repeated EMI surveys for mapping θ, and to investigate the limitations of its applicability for soil mapping. Results suggest that i) stable soil properties have the major effect on the EMI signal, while θ plays a minor role; ii) soil moisture may strenghten the ECa pattern when local soil properties control the θ pattern; iii) when the contribution of other factors is considerable, ECa patterns related to stable soil properties may be partially hidden. In conclusion, EMI measurements carried out under unsuitable hydrological conditions may lead to misinterpretation of soil properties, therefore combined pedological and hydrological expertise is necessary to support proximal soil sensing campaigns, with benefits for precision agriculture practices.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201413830
2015-09-06
2020-04-01
Loading full text...

Full text loading...

References

  1. CEN Workshop Agreement (CWA) 16373
    CEN Workshop Agreement (CWA) 16373. [2011] Best practice approach for electromagnetic induction (EMI) measurements of the near surface. CEN, Brussels, Belgium, 56.
    [Google Scholar]
  2. Cousin, I., BessonA., BourennaneH., PasquierC., NicoullaudB., KingD. and RichardG.
    [2009] From spatial-continuous electrical resistivity measurements to the soil hydraulic functioning at the field scale. Geosci C.R., 341, 859–867, doi:10.1016/j.crte.2009.07.011.
    https://doi.org/10.1016/j.crte.2009.07.011 [Google Scholar]
  3. Doolittle, J.A. and BrevikE.C.
    [2014] The use of electromagnetic induction techniques in soils studies. Geoderma, 223–225, 33–45, doi:10.1016/j.geoderma.2014.01.027.
    https://doi.org/10.1016/j.geoderma.2014.01.027 [Google Scholar]
  4. Doolittle, J.A., IndoranteS.J., PotterD.K., HefnerS.G. and McCauleyW.M.
    [2002] Comparing three geophysical tools for locating sand blows in alluvial soils of southeast Missouri. J. Soil Water Conserv, 57, 175–182
    [Google Scholar]
  5. Grayson, R.B., WesternA.W., ChiewF.H.S. and BlöschlG.
    [1997] Preferred states in spatial soil moisture patterns: Local and non-local controls. Water Resources Research, 33(12), 2897–2908, doi:10.1029/97WR02174.
    https://doi.org/10.1029/97WR02174 [Google Scholar]
  6. Martini, E., CominaC., PrioriS. and CostantiniE.A.C.
    [2013] A combined geophysical-pedological approach for precision viticulture in the Chianti hills. Bollettino di Geofisica Teorica ed Applicata, 54(2), 165–181, doi:10.4430/bgta0079.
    https://doi.org/10.4430/bgta0079 [Google Scholar]
  7. MartiniE., Wollschläger, U., Kögler, S., BehrensT., DietrichP., ReinstorfF., SchmidtK., WeilerM., WerbanU., ZachariasS.
    [2015] Spatial and Temporal Dynamics of Hillslope-Scale Soil Moisture Patterns: Characteristic States and Transition Mechanisms. Vadose Zone J., 14(4), doi:10.2136/vzj2014.10.0150.
    https://doi.org/10.2136/vzj2014.10.0150 [Google Scholar]
  8. McNeill, J.D.
    [1980] Electromagnetic terrain conductivity measurement at low induction numbers. Tech. Note TN-6, Geonics Ltd., Mississauga, ON, Canada.
    [Google Scholar]
  9. Priori, S., MartiniE. and CostantiniE.A.C.
    [2010] Three proximal sensors for mapping skeletal soils in vineyards. In: GilkesR.J. and PragonkepN. (Eds) Soil Solutionsfor a Changing World. 19th World Congress of Soil Science, Brisbane, QLD, Australia, 1–6 August 2010. [CD] IUSS.
    [Google Scholar]
  10. Priori, S., MartiniE., AndrenelliM.C., MaginiS., AgnelliA.E., BucelliP., BiagiM., PellegriniS. and CostantiniE.A.C.
    [2013] Improving wine quality through harvest zoning and combined use of remote and soil proximal sensing. Soil Sci. Soc. Am. J., 77, 1338–1348, doi:10.2136/sssaj2012.0376.
    https://doi.org/10.2136/sssaj2012.0376 [Google Scholar]
  11. Robinson, D., AbduH., LebronI. and JonesS.
    [2012] Imaging of hill-slope moisture wetting patterns in a semi-arid oak savanna catchment using time-lapse electromagnetic induction. J. of Hydrology, 416–417, 39–49, doi: 10.1016/j.jhydrol.2011.11.034.
    https://doi.org/10.1016/j.jhydrol.2011.11.034 [Google Scholar]
  12. Shanahan, P.W., Binley, A., Whalley, W.R., Watts, C.W.
    [2015] The Use of Electromagnetic Induction to Monitor Changes in Soil Moisture Profiles beneath Different Wheat Genotypes. Soil Sci. Soc. Am. J, 79, 459–466, doi:10.2136/sssaj2014.09.0360.
    https://doi.org/10.2136/sssaj2014.09.0360 [Google Scholar]
  13. Triantafilis, J., LaslettG.M. and McBratneyA.B.
    [2000] Calibrating an electromagnetic induction instrument to measure salinity in soil under irrigated cotton. Soil Sci. Soc. Am. J., 64, 1009–1017, doi:10.2136/sssaj2000.6431009x.
    https://doi.org/10.2136/sssaj2000.6431009x [Google Scholar]
  14. Vachaud, G.A., Passerat de SilansA., BalabanisP. and VauclinM.
    [1985] Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Am. J., 49, 822–828, doi: 10.2136/sssaj1985.03615995004900040006x.
    https://doi.org/10.2136/sssaj1985.03615995004900040006x [Google Scholar]
  15. Werban, U., Kuka, K., Merbach, I.
    [2009] Correlation of electrical resistivity, electrical conductivity and soil parameters at a long-term fertilization experiment. Near Surface Geophysics, 7(1), 5–14, doi: 10.3997/1873‑0604.2008038.
    https://doi.org/10.3997/1873-0604.2008038 [Google Scholar]
  16. Western, A.W., GraysonR.B., BlöschlG., WillgooseG.R. and McMahonT.A.
    [1999] Observed spatial organisation of soil moisture and its relation to terrain indices. Water Resources Research, 35(3), 797–810, doi: 10.1029/1998WR900065.
    https://doi.org/10.1029/1998WR900065 [Google Scholar]
  17. Zacharias, S., BogenaH., SamaniegoL., MauderM., FußR., Pütz, T., FrenzelM., SchwankM., BaesslerC., ButterbachK.-Bahl, BensO., BorgE., BrauerA., DietrichP., HajnsekI., HelleG., KieseR., KunstmannH., KlotzS., MunchJ.C., PapenH., PriesackE., SchmidH.P., SteinbrecherR., RosenbaumU., TeutschG. and VereeckenH.
    [2011] A network of terrestrial environmental observatories in Germany. Vadose Zone J., 10(3), 955–973, doi:10.2136/vzj2010.0139.
    https://doi.org/10.2136/vzj2010.0139 [Google Scholar]
  18. ZhuQ., LinH., DoolittleJ.
    [2010] Repeated Electromagnetic Induction Surveys for Determining Subsurface Hydrologic Dynamics in an Agricultural Landscape. Soil Science Society of America Journal, 74, 1750–1762, doi:10.2136/sssaj2010.0055.
    https://doi.org/10.2136/sssaj2010.0055 [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201413830
Loading
/content/papers/10.3997/2214-4609.201413830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error