1887

Abstract

Summary

Underground storage of hydrogen in porous media could be an option for storing large amounts of energy over time periods of days to months in order to dampen the fluctuating power generation from renewable sources like wind or solar power. In this study, possible dimensions of such a hydrogen storage, operating parameters as well as induced effects on the subsurface are investigated using numerical scenario simulations. The H2 storage is simulated using a heterogeneous sandstone layer in an anticlinal structure located in northern Germany. The parametrization of the storage formation is based on a local facies model. The simulated storage is capable of delivering about 200000 GJ of energy over a period of one week, a typical period of reduced wind power generation. The induced hydraulic effects of the storage do not show a strong dependence on the formation heterogeneity and are restricted to less than one bar overpressure for distances larger than 4.5 km. Chemical effects are limited to the zone taken up by the dissolved gas components in the formation water, which is approximated by the distribution of the gas phase. This zone strongly depends on formation heterogeneity and extents up to 3 km laterally.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201414259
2015-10-13
2024-03-28
Loading full text...

Full text loading...

References

  1. Bauer, S., Beyer, C., Dethlefsen, F., Dietrich, P., Duttmann, R., Ebert, M., Feeser, V., Görke, U., Köber, R., Kolditz, O., Rabbel, W., Schanz, W., Schäfer, D., Würdemann, H. and Dahmke, A.
    [2013] Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ. Earth Sci, 70, 3935–3943.
    [Google Scholar]
  2. Doornenbal, J.C. and Stevenson, A.G.
    (editors) [2010] Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v.Houten, ISBN 978-90-73781-61-0.
    [Google Scholar]
  3. Fahrion, H. and Betz, D.
    [1991] Geologischer Rahmen, Fund- und Fördergeschichte. Veröffentlichungen der Niedersächsischen Akademie der Geowissenschaften, 6, 7–10.
    [Google Scholar]
  4. Gaupp, R.
    [1991] Zur Fazies und Diagenese des Mittelrhät-Hauptsandsteins im Gasfeld Thönse. Veröffentlichungen der Niedersächsischen Akademie der Geowissenschaften, 6, 34–55.
    [Google Scholar]
  5. Hese, F.
    [2012] 3D Modellierung und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. PhD-Thesis, University of Kiel, 2012.
    [Google Scholar]
  6. Klaus, T., Vollmer, C., Werner, K., Lehmann, H. and Muschen, K.
    [2010] Energieziel 2050. Umweltbundesamt, Germany.
    [Google Scholar]
  7. MELUR
    (Edt.) [2013] Energiebilanz Schleswig-Holstein 2011. Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume, Statistisches Amt für Schleswig-Holstein, Germany.
    [Google Scholar]
  8. Oldenburg, C.
    [2003] Carbon Dioxide as Cushion Gas for Natural Gas Storage. Energy & Fuels, 17, 240–246.
    [Google Scholar]
  9. Oldenburg, C. and Pan, L.
    [2012] Utilization of CO2 as cushion gas for porous media compressed air energy storage. Greenhouse Gas Sci. Technol, 3, 1–12.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201414259
Loading
/content/papers/10.3997/2214-4609.201414259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error