The wide spread utilization of the subsurface for energy (heat) and mass (gas) storage in future requires an underground land use planning in order to be conducted efficiently and safely. The definition of underground compartments discriminating between spaces of utilization, induced effect, and monitoring is introduced. Numerical scenario simulations help to predict impacts of such underground uses and furthermore to determine sensitive parameters either regulating the induced processes or being influenced by these. For this task, parameters of geological features, of processes occurring underground, and of the intended storage demand are needed. This study presents an overview of the ANGUS+ joint research project focusing on this synoptic approach, further visualizing parameter availabilities as well as their uncertainties. Thus the needs for focusing further parameter acquisition aiming at an improvement of the mentioned scenario simulations and their expressiveness are deducted.


Article metrics loading...

Loading full text...

Full text loading...


  1. Bauer, S., Beyer, C., Dethlefsen, F., Dietrich, P., Duttmann, R., Ebert, M., Feeser, V., Görke, U., Köber, R., Kolditz, O., Rabbel, W., Schanz, T., Schäfer, D., Würdemann, H. and Dahmke, A.
    [2013] Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environmental Earth Sciences, 70(8), 3935–3943.
    [Google Scholar]
  2. Benisch, K. and Bauer, S.
    [2013] Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. International Journal of Greenhouse Gas Control, 19(0), 220–233.
    [Google Scholar]
  3. Berta, M., Becker, A., Dethlefsen, F., Ebert, M., Koch, S. and Dahmke, A.
    [this issue] No short-term attenuation of methane leaked into shallow aquifers - an experimental study.
    [Google Scholar]
  4. Dethlefsen, F., Ebert, M. and Dahmke, A.
    [2014] A geological database for parameterization in numerical modeling of subsurface storage in Northern Germany. Environmental Earth Sciences, 71, 2227–2244.
    [Google Scholar]
  5. Dethlefsen, F., Köber, R., Schäfer, D., Hagrey, S.A.A., Hornbruch, G., Ebert, M., Beyer, M., Großmann, J. and Dahmke, A.
    [2013] Monitoring Approaches for Detecting and Evaluating CO2 and Formation Water Leakages into Near-surface Aquifers. Energy Procedia, 37(0), 4886–4893.
    [Google Scholar]
  6. Hese, F.
    [2011] 3D geological models of the subsurface of Schleswig-Holstein, one Potential contribution to studies on the use of deep saline Aquifers. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 162(4), 389–404.
    [Google Scholar]
  7. Hese, F., Liebsch-Dörschner, T., Offermann, P., Rheinländer, J., Thomsen, C. and Rosenbaum, S.
    [2012] Geologische Modelle der Deck- und Speichergesteine Schleswig-Holsteins. Final Report: CO2-MOPA, A.Dahmke and S.Bauer (Eds.), Kiel.
    [Google Scholar]
  8. Kunkel, R., Voigt, H.-J., Wendland, F. and Hannappel, S.
    [2004] Die natürliche, ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland. Schriften des Forschungszentrums Jülich; Reihe Umwelt, 204. Forschungszentrum Jülich, Jülich.
    [Google Scholar]
  9. Nolde, M., Biniyaz, E., Dethlefsen, F., Schwanebeck, M. and Duttmann, R.
    [this issue] Development of a 3D online planning tool for the evaluation ofpotential underground energy storage areas.
    [Google Scholar]
  10. Panfilov, M.
    [2010] Underground Storage of Hydrogen: In Situ Self-Organisation and Methane Generation. Transport in Porous Media, 85(3), 841–865.
    [Google Scholar]
  11. Pfeiffer, W.T., Li, D., Wang, B. and Bauer, S.
    [2015] Feasibility and induced effects of subsurface porous media hydrogen storage. General Assembly of the European Geosciences Union, Vienna.
    [Google Scholar]
  12. Scheer, W., Kröger, J. and Kirsch, R.
    [2007] Geologische 3D-Modellierung des Untergrundes - Ergebnisse aus dem INTERREG IIIB Projekt BurVal. Annual Report of the “Landesamt für Natur und Umwelt des Landes Schleswig-Holstein”, 159–170, Flintbek.
    [Google Scholar]
  13. van Genuchten, M.T.
    [1980] A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Sci. Soc. Am. J, 44(5), 892–898.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error