In the past years the multi-point geostatistical (MPS) simulation geo-models have been used successfully, creating realistic geological instances(facies


Article metrics loading...

Loading full text...

Full text loading...


  1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B. et al.
    [2009] The ensemble kalman filter in reservoir engineering–a review. Spe Journal, 14(03), 393–412.
    [Google Scholar]
  2. Agbalaka, C. and Oliver, D.
    [2008] Application of the enkf and localization to automatic history matching of facies distribution and production data. Mathematical Geosciences, 40, 374–.
    [Google Scholar]
  3. Caers, J. and Zhang, T.
    [2004] Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models.
    [Google Scholar]
  4. Chang, H. and Zhang, D.
    [2014] History matching of statistically anisotropic fields using the karhunen-loeve expansion-based global parameterization technique. Computational Geosciences, 18(2), 265–282.
    [Google Scholar]
  5. Deutsch, C.V. and Wang, L.
    [1996] Hierarchical object-based stochastic modeling of fluvial reservoirs. Mathematical Geology, 28(7), 857–880.
    [Google Scholar]
  6. Deutsch, C. and Journel, A.
    [1998] Geostatistical software library and user guide (gslib).
    [Google Scholar]
  7. Evensen, G.
    [2003] The ensemble kalman filter: Theoretical formulation and practical implementation. Ocean dynamics, 53(4), 343–367.
    [Google Scholar]
  8. Galli, A., Beucher, H., Le Loc, G., Doligez, B. et al.
    [1994] The pros and cons of the truncated gaussian method. In: Geostatistical simulations. Springer, 217–233.
    [Google Scholar]
  9. Gu, Y. and Oliver, D.
    [2007] An iterative ensemble kalman filter for multiphase flow data assimilation. SPE Journal, 12(4), 438–446.
    [Google Scholar]
  10. Guardiano, F.B. and Srivastava, R.M.
    [1993] Multivariate geostatistics: beyond bivariate moments. In: Geostatistics Troia 92. Springer, 133–144.
    [Google Scholar]
  11. Jafarpour, B. and Khodabakhshi, M.
    [2011] A probability conditioning method (pcm) for nonlinear flow data integration into multipoint statistical facies simulation. Mathematical Geosciences, 43(2), 133–164.
    [Google Scholar]
  12. Liu, N. and Oliver, D.
    [2005] Ensemble kalman filter for automatic history matching of geologic facies. Journal of Petroleum Science and Engineering, 47(3–4), 147–161.
    [Google Scholar]
  13. Lorentzen, R.J., Nævdal, G. et al.
    [2012] Estimating facies fields using the ensemble kalman filter and distance functions, applied to shallow-marine environments. SPE Journal, 3(1), 146–148.
    [Google Scholar]
  14. Sarma, P., Chen, W.H. et al.
    [2009] Generalization of the ensemble kalman filter using kernels for nongaussian random fields. SPE Reservoir Simulation Symposium, Society of Petroleum Engineers.
    [Google Scholar]
  15. Sebacher, B., Hanea, R. and Heemink, A.
    [2013] A probabilistic parametrization for geological uncertainty estimation using the ensemble kalman filter (enkf). Computational Geosciences, 17(5), 813–832.
    [Google Scholar]
  16. Sebacher, B., Stordal, A. and Hanea, R.
    [2014] Bridging Multi Point Statistics and Truncated Gaussian Fields for Improved Estimation of Channelized Reservoirs with Ensemble Methods. Computational Geosciences, in review.
    [Google Scholar]
  17. Stordal, A.S., Karlsen, H.A., Nævdal, G., Skaug, H.J. and Vallès, B.
    [2011] Bridging the ensemble kalman filter and particle filters: the adaptive gaussian mixture filter. Computational Geosciences, 15(2), 293–305.
    [Google Scholar]
  18. Stordal, A. and Lorentzen, R.
    [2014] An iterative version of the adaptive gaussian mixture filter. Computational Geosciences, doi:10.1007/s10596‑014‑9402‑6.
    https://doi.org/10.1007/s10596-014-9402-6 [Google Scholar]
  19. Strebelle, S.
    [2002] Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34(1), 1–21.
    [Google Scholar]
  20. Zhao, Y., Reynolds, A.C. and Li, G.
    [2008] Generating facies maps by assimilating production data with enkf. SPE/DOE symposium on improvement oil recoveryTulsa20–23 April.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error