1887

Abstract

Summary

In the past years the multi-point geostatistical (MPS) simulation geo-models have been used successfully, creating realistic geological instances(facies

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.20141789
2014-09-08
2020-04-04
Loading full text...

Full text loading...

References

  1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B. et al.
    [2009] The ensemble kalman filter in reservoir engineering–a review. Spe Journal, 14(03), 393–412.
    [Google Scholar]
  2. Agbalaka, C. and Oliver, D.
    [2008] Application of the enkf and localization to automatic history matching of facies distribution and production data. Mathematical Geosciences, 40, 374–.
    [Google Scholar]
  3. Caers, J. and Zhang, T.
    [2004] Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models.
    [Google Scholar]
  4. Chang, H. and Zhang, D.
    [2014] History matching of statistically anisotropic fields using the karhunen-loeve expansion-based global parameterization technique. Computational Geosciences, 18(2), 265–282.
    [Google Scholar]
  5. Deutsch, C.V. and Wang, L.
    [1996] Hierarchical object-based stochastic modeling of fluvial reservoirs. Mathematical Geology, 28(7), 857–880.
    [Google Scholar]
  6. Deutsch, C. and Journel, A.
    [1998] Geostatistical software library and user guide (gslib).
    [Google Scholar]
  7. Evensen, G.
    [2003] The ensemble kalman filter: Theoretical formulation and practical implementation. Ocean dynamics, 53(4), 343–367.
    [Google Scholar]
  8. Galli, A., Beucher, H., Le Loc, G., Doligez, B. et al.
    [1994] The pros and cons of the truncated gaussian method. In: Geostatistical simulations. Springer, 217–233.
    [Google Scholar]
  9. Gu, Y. and Oliver, D.
    [2007] An iterative ensemble kalman filter for multiphase flow data assimilation. SPE Journal, 12(4), 438–446.
    [Google Scholar]
  10. Guardiano, F.B. and Srivastava, R.M.
    [1993] Multivariate geostatistics: beyond bivariate moments. In: Geostatistics Troia 92. Springer, 133–144.
    [Google Scholar]
  11. Jafarpour, B. and Khodabakhshi, M.
    [2011] A probability conditioning method (pcm) for nonlinear flow data integration into multipoint statistical facies simulation. Mathematical Geosciences, 43(2), 133–164.
    [Google Scholar]
  12. Liu, N. and Oliver, D.
    [2005] Ensemble kalman filter for automatic history matching of geologic facies. Journal of Petroleum Science and Engineering, 47(3–4), 147–161.
    [Google Scholar]
  13. Lorentzen, R.J., Nævdal, G. et al.
    [2012] Estimating facies fields using the ensemble kalman filter and distance functions, applied to shallow-marine environments. SPE Journal, 3(1), 146–148.
    [Google Scholar]
  14. Sarma, P., Chen, W.H. et al.
    [2009] Generalization of the ensemble kalman filter using kernels for nongaussian random fields. SPE Reservoir Simulation Symposium, Society of Petroleum Engineers.
    [Google Scholar]
  15. Sebacher, B., Hanea, R. and Heemink, A.
    [2013] A probabilistic parametrization for geological uncertainty estimation using the ensemble kalman filter (enkf). Computational Geosciences, 17(5), 813–832.
    [Google Scholar]
  16. Sebacher, B., Stordal, A. and Hanea, R.
    [2014] Bridging Multi Point Statistics and Truncated Gaussian Fields for Improved Estimation of Channelized Reservoirs with Ensemble Methods. Computational Geosciences, in review.
    [Google Scholar]
  17. Stordal, A.S., Karlsen, H.A., Nævdal, G., Skaug, H.J. and Vallès, B.
    [2011] Bridging the ensemble kalman filter and particle filters: the adaptive gaussian mixture filter. Computational Geosciences, 15(2), 293–305.
    [Google Scholar]
  18. Stordal, A. and Lorentzen, R.
    [2014] An iterative version of the adaptive gaussian mixture filter. Computational Geosciences, doi:10.1007/s10596‑014‑9402‑6.
    https://doi.org/10.1007/s10596-014-9402-6 [Google Scholar]
  19. Strebelle, S.
    [2002] Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34(1), 1–21.
    [Google Scholar]
  20. Zhao, Y., Reynolds, A.C. and Li, G.
    [2008] Generating facies maps by assimilating production data with enkf. SPE/DOE symposium on improvement oil recoveryTulsa20–23 April.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.20141789
Loading
/content/papers/10.3997/2214-4609.20141789
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error