Human-induced earthquakes are more and more brought into the focus of public attention. E. g. attracts notice to the dramatic increase of the number of earthquakes in the central and eastern United States over the past few years. Environments prone to induce or trigger seismicity are numerous, e. g. oil and gas exploration sites, large-scale surface quarries and mines, Enhanced Geothermal Systems (EGS), dam sites and injections of e.g. CO2 or waste water. Since the nature of induced and triggered earthquakes implies their occurrence near engineering activity, even earthquakes of small magnitude are a cause for concern. We present several numerical methods to enhance the understanding of the spatial and temporal occurrence of seismicity, which has been triggered or induced by human operations: a) poroelastic modelling employing elementary Green’s functions, b) analytical fracture model combined with a rate- and state- dependent constitutive model and c) a 3D FEM able to handle both heterogeneous rocks and branched fractures.


Article metrics loading...

Loading full text...

Full text loading...


  1. Albaric, J., Oye, V., Langet, N., Hasting, M., Lecomte, I., Iranpour, K., Messeiller, M., and ReidP.
    [2013]. Monitoring of induced seismicity during the first geothermal reservoir stimulation at Paralana, Australia. Geothermics, in press, doi:10.1016/j.geothermics.2013.10.013.
    https://doi.org/10.1016/j.geothermics.2013.10.013 [Google Scholar]
  2. Aegerter, A. and Bosshardt, O.
    [2007]. Schadenfalle Erdbeben vom 8.12.2006, Perimeterdefinition. Technischer Bericht, 13.07.2007, Ingenieurbüro A. Aegerter & Dr. O. Bosshardt AG, Basel, Möhlin.
    [Google Scholar]
  3. Dahm, T., Becker, D., Bischoff, M., Cesca, S., Dost, B., Fritschen, R., Hainzl, S., Klose, C.D., Kühn, D., Lasocki, S., Meier, T., Ohrnberger, M., Rivalta, E., Wegler, U. and Husen, S.
    [2012a]. Recommendation for the discrimination of human-related and natural seismicity. J. Seismol., doi: 10.1007/s10950‑012‑9295‑6.
    https://doi.org/10.1007/s10950-012-9295-6 [Google Scholar]
  4. Dahm, T., Hainzl, S. and Fischer, T.
    [2012b]. Stimulation induced seismicity: fracture combined with rate-and-state model. 3rd Annual Meeting AIM, 10–12 Oct 2012, Smolenice, Slovakia (Abstract).
    [Google Scholar]
  5. Dahm, T., Hainzl, S., Becker, D., Bischoff, M., Cesca, S., Dost, R., Fritschen, R., Kühn, D., Lasocki, S., Klose, C.D., Meier, T., Ohrnberger, M., Rivalta, R., Shapiro, S. and Wegler, U.
    [2010a]. How to discriminate induced, triggered and natural seismicity. In: Ritter, J. and Oth, A. (Eds.) Proceedings of the workshop “Induced seismicity”, Nov. 1–17, 2010, Luxembourg, Cahier du Centre Europeen de Geodynamique et de Sismologie, 30, 69–76.
    [Google Scholar]
  6. Dahm, T., Hainzl, S. and Fischer, T.
    [2010b]. Bidirectional and unidirectional fracture growth during hydrofracturing: role of driving stress gradients. J. Geophys. Res., 115(B12322).
    [Google Scholar]
  7. Dieterich, J.
    [1994]. A constitute law for rate of earthquake production and its application for earthquake clustering. J. Geophys. Res., 99, 2601–2618.
    [Google Scholar]
  8. Ellsworth, W.L.
    (2013). Injection-induced earthquakes. Science, 341, 1225942, doi:10.1126/science.1225942.
    https://doi.org/10.1126/science.1225942 [Google Scholar]
  9. Gupta, H.K., Rastogi, B.K. and Narain, H.
    [1972]. Some discriminatory characteristics of earthquakes near the Kariba, Kremasta, and Koyna artificial lakes. Bull. Seismol. Soc. Am., 62(2), 493–507.
    [Google Scholar]
  10. Häring, M.O., Schanz, U., Ladner, F. and Dyer, B.C.
    [2008]. Characterization of Basel 1 enhanced geothermal system. Geothermics, 37, 469–495.
    [Google Scholar]
  11. Healy, J.H., Rubey, W., Griggs, D.T. and Raleigh, C.B.
    [1968]. The Denver Earthquakes. Science, 161, 1301–1310.
    [Google Scholar]
  12. Heimann, S.
    [2011]. A Robust Method to Estimate Kinematic Earthquake Source Parameters. PhD Thesis, University of Hamburg, Hamburg, Germany.
    [Google Scholar]
  13. Kerenan, K.M., Savage, H.M., Abers, G.A. and Cochran, E.S.
    [2013]. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 41, 699–702.
    [Google Scholar]
  14. Klose, C.D.
    [2007]. Geomechanical modeling of the nucleation process of Australia’s 1989 M5.6 Newcastle earthquake. Earth Planet. Sci. Lett., 256(3–4), 547–553.
    [Google Scholar]
  15. Knoll, P.
    [1990]. The fluid-induced tectonic rock burst of March 13, 1989 in Werra potash mining district of the GDR (first results). Gerlands Beiträge zur Geophysik, 99, 239–245.
    [Google Scholar]
  16. Kovach, R.L.
    [1974]. Source mechanisms for Wilmington oil field, California, subsidence earthquakes. Bull. Seismol. Soc. Am., 64, 699–711.
    [Google Scholar]
  17. Nicholson, C. and Wesson, R.L.
    [1992]. Triggered earthquakes and deep well activities. Pure Appl. Geophys., 139(3/4), 561–578.
    [Google Scholar]
  18. Rice, J.R. and Cleary, M.P.
    [1976]. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys, 14, 227–241.
    [Google Scholar]
  19. Shapiro, S.A., Dinske, C. and Rothert, E.
    [2006], Hydraulic-fracturing controlled dynamics of microseismic clouds. Geophys. Res. Lett., 33, L14312, doi:10.1029/2006GL026365.
    https://doi.org/10.1029/2006GL026365 [Google Scholar]
  20. Shapiro, S.A., Huenges, E. and Borm, G.
    [1997]. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int., 131, F15–F18, doi:10.1111/j.1365‑246X.1997.tb01215.x.
    https://doi.org/10.1111/j.1365-246X.1997.tb01215.x [Google Scholar]
  21. Simpson, D.W.
    [1986]. Triggered earthquakes. Ann. Rev. Earth Planet. Sci., 14, 21–42.
    [Google Scholar]
  22. Simpson, D.W. and Leith, W.
    [1985]. The 1976 and 1984 Gazli, U.S.S.R. earthquakes – were they induced?Bull. Seismol. Soc. Am., 75, 1465–1468.
    [Google Scholar]
  23. Wang, R. and Kümpel, H.-J.
    [2003]. Poroelasticity: efficient modelling of strongly coupled, slow deformation processes in a multilayered half-space. Geophysics, 68(2), 705–717.
    [Google Scholar]
  24. Wangen, M.
    [2011]. Finite element modelling of hydraulic fracturing on a reservoir scale in 2D. J. Petrol. Sci. Engin., 77, 274–285.
    [Google Scholar]
  25. [2013]. Finite element modeling of hydraulic fracturing in 3D. Comp. Geosci., 17(4), 647–659.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error