Field data from polymer flooding operations sometimes indicate a better-than-expected polymer injectivity below fracturing pressure. Current interpretations for this unexpected phenomenon are based either on geomechanical considerations (for unconsolidated sand formations) or on polymer mechanical degradation, potentially occurring in the injection facilities and the near wellbore area. In this paper, a new approach of polymer injectivity is suggested. It is based on the study of polymer mechanical degradation with respect to both shear and extensional viscosities. In the first part of this work, we have investigated the onset of mechanical degradation by submitting semi-dilute solutions of high molecular weight partially hydrolyzed polyacrylamide (HPAM) to extensional laminar flow created by an API capillary system. We have then measured both shear and extensional viscosity of the native and the degraded HPAM solutions. We consider the onset of mechanical degradation to be reached when shear viscosity loss is equal to 10%. At low degradation extensional rate, extensional viscosity decreases to the same extent as shear viscosity (10%), whereas, at high degradation extensional rates, the decrease reaches up to 60%. This means that degraded HPAM with weakly affected shear viscosity can develop much less resistance to extensional flow. In the second part, we have explored the influence of mechanical degradation on injectivity by determining resistance factors of native and degraded HPAM solutions. Solutions have been injected in reproducible unconsolidated sand packs. At low velocities, resistance factors were similar for both kind of solutions, as expected from their comparable shear viscosities. However, at high velocities, namely where flow in porous media implies high extensional deformations in the vicinities of the pore throats, rheo-thickening was much less marked for solutions degraded at high extensional rate. These results allow understanding why polymers which do not seem to be mechanically degraded according to their shear viscosity can show a very good injectivity, thanks to the reduction of extensional resistance in porous media. They could also lead to establish guidelines for designing new polymer pre-treatment methods aimed at improving injectivity while retaining the mobility control ability of polymers.


Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error