In a recent study two hierarchical multi-objective methods were suggested to include short-term targets in life-cycle production optimization. However this previous study has two limitations: 1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access and an extensive implementation effort, and 2) one of the two proposed methods relies on the Hessian matrix which is obtained by a computationally expensive method. In order to overcome the first of these limitations, we used ensemble-based optimization (EnOpt). EnOpt does not require source code access and is relatively easy to implement. To address the second limitation, we used the BFGS algorithm to obtain an approximation of the Hessian matrix. We performed experiments in which a water flood was optimized in a geologically realistic multi-layer sector model. The controls were inflow control valve settings at pre-defined time intervals. Undiscounted Net Present Value (NPV) and highly discounted NPV were the long-term and short-term objective functions used. We obtained an increase of approximately 14% in the secondary objective for a decrease of only 0.2-0.5% in the primary objective. The study demonstrates that ensemble-based multi-objective optimization can achieve results of practical value in a computationally efficient manner.


Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error