A sequential fully implicit multi-scale meshless multi-point flux method (MS-MMPFA) for nonlinear hyperbolic partial differential equations of fluid flow in heterogeneous porous media is described in this paper. The method extends the recently proposed the meshless multi-point flux approximation (MMPFA) for general fluid flow in porous media [Lukyanov, “Meshless Upscaling Method and its Application to a Fluid Flow in Porous Media”, Proceeding ECMOR XII, 2010] by utilizing advantages of the existing multi-scale finite volume (MSFV) schemes. The MMPFA is based on a gradient approximation commonly used in meshless method and combined with the mixed corrections which ensure linear completeness. In corrected meshless method, the domain boundaries and field variables at the boundaries are approximated with the default accuracy of the method. The MMPFA method was successfully tested for a number of problems where it was clearly shown that the MMPFA gives a good agreement with analytical solutions for a given number of particles. However, the level of detail and range of property variability included in reservoir characterization models leads to a large number of particles to be considered in MMPFA method. In this paper this problem is resolved using a sequential fully implicit MS-MMPFA method. The results are presented, discussed.


Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error