
Full text loading...
This paper examines the potential of using the FDHEM RESOLVE system as basis for mapping reaches of the river that contribute to elevated salt loads in the Murray River to the south east of Mildura in Victoria. The advantages of the airborne systems become more apparent when data coverage and acquisition costs are considered, particularly in a situation where a parallel swath approached is employed. This entails the acquisition of adjacent lines of EM data along the centre and along the margins of the river. We suggest this approach provides for a better understanding of recharge and discharge processes and links between the floodplain and the main-river channel. Compared with data acquired along the river alone, this study demonstrated our ability to use Helicopter EM data to map losing and gaining (from a salt load perspective) stretches of the river and to provide insight into which parts of the groundwater-floodplain system were significant contributors to river salt loads. The rapid acquisition of airborne EM data makes these systems more suited to providing temporal snapshots of a river-floodplain environment during dramatic climatic events, such as flooding.