
Full text loading...
The quality of seismic images obtained by reverse time migration strongly depend on the employed image condition. We propose a new imaging condition, which is motivated by stationary phase analysis of the classical cross-correlation imaging condition. Its implementation requires the Poynting vector of the source and receiver wavefields at the imaging point. An obliquity correction is added to compensate for the reflector dip effect on amplitudes of reverse time migration. Numerical experiments show that using an imaging condition with obliquity compensation improves reverse time migration by reducing backscattering artifacts and improving the illumination compensation.