1887

Abstract

Summary

Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture geometry and aperture, which cannot be fully sampled from subsurface data. We quantify for a range of aperture-size scaling models and the Barton-Bandis conductive shear model the fractures that are critically stressed at in-situ stress conditions as defined by either Coulomb friction or Barton-Bandis peak shearing. These models are applied to realistic large-scale fracture networks. (Sub-)linear length scaling predicts the largest average aperture, and subsequent equivalent permeability exceeds 1 Darcy in a 10mD matrix. In contrast, Barton-Bandis aperture predicts an equivalent permeability of 60mD. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the reactivated fracture network on equivalent permeability depends on the matrix properties, as in a low-permeable matrix, fracture connectivity controls equivalent permeability, while for a more permeable matrix, large absolute apertures are more important than network connectivity. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on fracture connectivity, controlled by aperture.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201601169
2016-05-31
2020-04-05
Loading full text...

Full text loading...

References

  1. Bandis, S.C., Lumsden, A.C., Barton, N.R.
    [1983] Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, 249–268. doi:10.1016/0148‑9062(83)90595‑8
    https://doi.org/10.1016/0148-9062(83)90595-8 [Google Scholar]
  2. Barton, C.A., Zoback, M.D., Moos, D.
    [1995] Fluid flow along potentially active faults in crystalline rock. Geology, 23, 683. doi:10.1130/0091‑7613(1995)023<0683:FFAPAF>2.3.CO;2
    https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2 [Google Scholar]
  3. Barton, N., Bandis, S.
    [1980] Some effects of scale on the shear strength of joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 69–73. doi:http://dx.doi.org/10.1016/0148-9062(80)90009-1
    [Google Scholar]
  4. Hooker, J.N., Gale, J.F.W., Gomez, L.A., Laubach, S.E., Marrett, R., Reed, R.M.
    [2009] Aperture-size scaling variations in a low-strain opening-mode fracture set, Cozzette Sandstone, Colorado. J. Struct. Geol., 31, 707–718. doi:10.1016/j.jsg.2009.04.001
    https://doi.org/10.1016/j.jsg.2009.04.001 [Google Scholar]
  5. Matthäi, S.K., Belayneh, M.
    [2004] Fluid flow partitioning between fractures and a permeable rock matrix. Geophys. Res. Lett., 31, n/a–n/a. doi:10.1029/2003GL019027
    https://doi.org/10.1029/2003GL019027 [Google Scholar]
  6. Matthäi, S.K., Geiger, S., Roberts, S.G., Paluszny, A., Belayneh, M., Burri, A., Mezentsev, A., Lu, H., Coumou, D., Driesner, T., Heinrich, C.A.
    [2007] Numerical simulation of multi-phase fluid flow in structurally complex reservoirs. Geol. Soc. London, Spec. Publ., 292, 405–429. doi:10.1144/SP292.22
    https://doi.org/10.1144/SP292.22 [Google Scholar]
  7. Matthäi, S.K., Nick, H.M., Pain, C., Neuweiler, I.
    [2009] Simulation of Solute Transport Through Fractured Rock: A Higher-Order Accurate Finite-Element Finite-Volume Method Permitting Large Time Steps. Transp. Porous Media, 83, 289–318. doi:10.1007/s11242‑009‑9440‑z
    https://doi.org/10.1007/s11242-009-9440-z [Google Scholar]
  8. Nick, H.M., Paluszny, A., Blunt, M.J. and Matthai, S.K.
    [2011] Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations. Physical Review E, 84(5), doi: 10.1103/PhysRevE.84.056301
    https://doi.org/10.1103/PhysRevE.84.056301 [Google Scholar]
  9. Olson, J.E.
    [2003] Sublinear scaling of fracture aperture versus length: An exception or the rule?J. Geophys. Res., 108, 2413. doi:10.1029/2001JB000419
    https://doi.org/10.1029/2001JB000419 [Google Scholar]
  10. Olsson, R., Barton, N.
    [2001] An improved model for hydromechanical coupling during shearing of rock joints. Int. J. Rock Mech. Min. Sci., 38, 317–329. doi:10.1016/S1365‑1609(00)00079‑4
    https://doi.org/10.1016/S1365-1609(00)00079-4 [Google Scholar]
  11. Snow, D.T.
    [1969] Anisotropie Permeability of Fractured Media. Water Resour. Res. doi:10.1029/WR005i006p01273
    https://doi.org/10.1029/WR005i006p01273 [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201601169
Loading
/content/papers/10.3997/2214-4609.201601169
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error