The Hoop Fault Complex in South Barents Sea is an area of interest for oil exploration on the Norwegian shelf. The Wisting oil discovery in 2013 proved the mid to early Jurassic Realgrunnen Subgroup play. The wells in the Hoop area targetting the Realgrunnen Subgroup are presently a few hundred meters below the sea floor, but have been buried at considerable deeper depths earlier. As the wells that have been targetted are driven by seismic amplitude anomalies, results show a better understanding of the underlying rock physics is needed. We combine relative simple rock physics modelling with mechanical and geochemical history of the reservoir to describe a complex burial history and outline the potential seismic signature. Such diagnostics may be important for future quantitative seismic interpretation of complex tectonic provinces.


Article metrics loading...

Loading full text...

Full text loading...


  1. Avseth, P., Mukerji, T. and Mavko, G.
    [2005] Quantitative Seismic Interpretation. Cambridge University Press, Cambridge.
  2. Avseth, P., Mukerji, T., Mavko, G. and Dvorkin, J.
    [2010] Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks — A review of selected models and suggested work flows. GEOPHYSICS, 75(5), 75A31, doi:10.1190/1.3483770.
    https://doi.org/10.1190/1.3483770 [Google Scholar]
  3. Avseth, P., Johansen, T. A., Bakhorji, A. and Mustafa, H. M.
    [2014] Rock-physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones. GEOPHYSICS, 79(2), D115–D121, doi:10.1190/geo2013‑0226.1.
    https://doi.org/10.1190/geo2013-0226.1 [Google Scholar]
  4. Berryman, J. G.
    [1992] Single-scattering approximations for coefficients in Biot’s equations of poroelasticity. J. Acoust. Soc. Am., 91(2), 551, doi:10.1121/1.402518.
    https://doi.org/10.1121/1.402518 [Google Scholar]
  5. Bjørlykke, K.
    [2010] Petroleum geoscience: From sedimentary environments to rock physics.
  6. Carcione, J. M. and Avseth, P.
    [2015] Rock-physics templates for clay-rich source rocks. GEOPHYSICS, 80(5), D481–D500, doi:10.1190/geo2014‑0510.1.
    https://doi.org/10.1190/geo2014-0510.1 [Google Scholar]
  7. Doré, A. G., Corcoran, D. V. and Scotchman, I. C.
    [2002] Prediction of the hydrocarbon system in exhumed basins, and application to the NW European margin. Geol. Soc. London, Spec. Publ., 196(1), 401–429, doi:10.1144/GSL.SP.2002.196.01.21.
    https://doi.org/10.1144/GSL.SP.2002.196.01.21 [Google Scholar]
  8. Dvorkin, J. and Nur, A.
    [1996] Elasticity of high porosity sandstones: Theory for two North Sea data sets. GEOPHYSICS, 61(5), 1363–1370, doi:10.1190/1.1444059.
    https://doi.org/10.1190/1.1444059 [Google Scholar]
  9. Gassmann, F.
    [1951] ELASTIC WAVES THROUGH A PACKING OF SPHERES. GEOPHYSICS, 16(4), 673–685, doi:10.1190/1.1437718.
    https://doi.org/10.1190/1.1437718 [Google Scholar]
  10. Hashin, Z. and Shtrikman, S.
    [1963] A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 11(2), 127–140, doi:10.1016/0022‑5096(63)90060‑7.
    https://doi.org/10.1016/0022-5096(63)90060-7 [Google Scholar]
  11. Henriksen, E., Ryseth, A. E., Larssen, G. B., Heide, T., Ronning, K., Sollid, K. and Stoupakova, A. V.
    [2011a] Chapter 10 Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. Geol. Soc. London, Mem., 35(1), 163–195, doi:10.1144/M35.10.
    https://doi.org/10.1144/M35.10 [Google Scholar]
  12. Henriksen, E., Bjornseth, H. M., Hals, T. K., Heide, T., Kiryukhina, T., Klovjan, O. S., Larssen, G. B., Ryseth, A. E., Ronning, K., Sollid, K. and Stoupakova, A.
    [2011b] Chapter 17 Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems. Geol. Soc. London, Mem., 35(1), 271–281, doi:10.1144/M35.17.
    https://doi.org/10.1144/M35.17 [Google Scholar]
  13. Khutorskoi, M. D., Viskunova, K. G., Podgornykh, L. V., Suprunenko, O. I. and Akhmedzyanov, V. R.
    [2008] A temperature model of the crust beneath the Barents Sea: Investigations along geotraverses. Geotectonics, 42(2), 125–136, doi:10.1134/S0016852108020039.
    https://doi.org/10.1134/S0016852108020039 [Google Scholar]
  14. Ogata, K., Senger, K., Braathen, A., Tveranger, J. and Olaussen, S.
    [2014] The importance of natural fractures in a tight reservoir for potential CO2 storage: a case study of the upper Triassic-middle Jurassic Kapp Toscana Group (Spitsbergen, Arctic Norway). Geol. Soc. London, Spec. Publ., 374(1), 395–415, doi:10.1144/SP374.9.
    https://doi.org/10.1144/SP374.9 [Google Scholar]
  15. Ohm, S. E., Karlsen, D. A. and Austin, T. J. F.
    [2008] Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. Am. Assoc. Pet. Geol. Bull., 92(9), 1191–1223, doi:10.1306/06180808028.
    https://doi.org/10.1306/06180808028 [Google Scholar]
  16. Senger, K.
    [2013] Impact of Geological Heterogeneity on CO2 Sequestration: From Outcrop to Simulator. Ph. D. thesis, University of Bergen.
  17. Walderhaug, O.
    [1996] Kinetic Modeling of Quartz Cementation and Porosity Loss in Deeply Buried Sandstone Reservoirs. Am. Assoc. Pet. Geol. Bull., 80(5), 731–745, doi:10.1306/64ED88A4‑1724‑11D7‑8645000102C1865D.
    https://doi.org/10.1306/64ED88A4-1724-11D7-8645000102C1865D [Google Scholar]
  18. Walderhaug, O. and Bjørkum, P. A.
    [1998] Calcite Cement in Shallow Marine Sandstones: Growth Mechanisms and Geometry. In: Carbonate Cementation in Sandstones, (ed.)S.Morad. pp.179–192. Blackwell Publishing Ltd., Oxford, UK.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error