1887

Abstract

When injecting CO2 or other fluids into a geological formation, pressure plays an important role both as a driver of flow and as a risk factor for mechanical integrity. The full effect of geomechanics on aquifer flow can only be captured using a coupled flow-geomechanics model. In order to solve this computationally expensive system, various strategies have been put forward over the years, with some of the best current methods based on sequential splitting. In this present work, we seek to approximate the full geomechanics effect on flow without the need of coupling with a geomechanics solver during simulation. We do this by means of precomputed pressure response functions. At grid model generation time, a geomechanics solver is used to compute the mechanical response of the aquifer for a set of pressure fields. The relevant information from these responses is then stored in a compact form and embedded with the grid model. We test the accuracy and computational performance of our approach on a simple 2D model and a more complex 3D model, and compare the results with those produced by a fully coupled approach as well as from as simple decoupled method based on Geertsma's uniaxial expansion coefficient.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201601760
2016-08-29
2020-09-21
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201601760
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error