1887

Abstract

Summary

Physicochemical interaction between the nanoparticles and the pore walls can cause significant retention of nanoparticles. The objective of this paper is to study nanoparticles retention when there is no energy barrier between the nanoparticles and rock surface. In this case, the double layer repulsion doesn’t exist, that nanoparticles retention depends on the diffusion coefficient of the nanoparticles and the thickness of the DLVO layer that mainly contributed by van der Waals attractive force. Perfect sink model is adjusted to calculate the rate of deposition of nanoparticles. Deposited nanoparticles could be released from the surface by physical perturbations. The kinetics of mobilization was analyzed by torque balance applied on a nanoparticle adhered to a flat surface in a moving fluid. Surface roughness is an important parameter in initiating particle to release from rock surface by affecting the length of the torque arms. The critical velocity for release acting at the center of nanoparticle can be identified. Numerical model was used to compare the theoretically calculated rates to experimental data. The model can be used to determine the fate of nanoparticles in porous media under different conditions of temperature, ionic strength, concentration, and pH that suppress the double layer repulsion.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201700233
2017-04-24
2020-04-06
Loading full text...

Full text loading...

References

  1. Abdelfatah, Elsayed R, Mohamed MSoliman, Hamid MKhattab
    . 2014. Improving Heavy Oil Recovery by Nanofluid Injection, The factors Affecting and Mathematical Modelling. Journal of Petroleum and Mining Engineering17: 88–89. Retrieved from https://www.researchgate.net/publication/292970343.
    [Google Scholar]
  2. Adamczyk, Zbigniew, PawelWeroński
    . 1999. Application of the DLVO theory for particle deposition problems. Advances in Colloid and Interface Science83 (1–3): 137–226. http://dx.doi.org/10.1016/S0001-8686(99)00009-3.
    [Google Scholar]
  3. Alshakhs, Mohammed J. , Anthony R.Kovscek
    . 2015. An Experimental Study of the Impact of Injection Water Composition on Oil Recovery from Carbonate Rocks. Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, 28–30 September. http://dx.doi.org/10.2118/175147-MS.
    [Google Scholar]
  4. Amankonah, J. Ofori, P.Somasundaran
    . 1985. Effects of dissolved mineral species on the electrokinetic behavior of calcite and apatite. Colloids and Surfaces15: 335–353. http://dx.doi.org/10.1016/0166-6622(85)80082-2.
    [Google Scholar]
  5. Antonio Alves Júnior, J. , J.Baptista Baldo
    . 2014. The Behavior of Zeta Potential of Silica Suspensions. New Journal of Glass and Ceramics4: 29–37. https://dx.doi.org/10.4236/njgc.2014.42004.
    [Google Scholar]
  6. Binks, Bernard P., WenhuiLiu, Jhonny A.Rodrigues
    . 2008. Novel Stabilization of Emulsions via the Heteroaggregation of Nanoparticles. Langmuir24 (9): 4443–4446. http://dx.doi.org/10.1021/la800084d.
    [Google Scholar]
  7. Bos, Rolf, Henny C.van der Mei, Henk J.Busscher
    . 1999. Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiology Reviews23 (2): 179–230. http://dx.doi.org/10.1111/j.1574-6976.1999.tb00396.x.
    [Google Scholar]
  8. Bousse, Luc, J. D.Meindl
    . 1987. Surface Potential-pH Characteristics in the Theory of the Oxide-Electrolyte Interface. In Geochemical Processes at Mineral Surfaces, Chap. 5, 79–98. ACS Symposium Series, American Chemical Society.
    [Google Scholar]
  9. Bousse, Luc, Nico F.de Rooij, P.Bergveld
    . 1983. The influence of counter-ion adsorption on the ?0/pH characteristics of insulator surfaces. Surface Science135 (1–3): 479–496. http://dx.doi.org/10.1016/0039-6028(83)90237-6.
    [Google Scholar]
  10. Brant, Jonathan, HélèneLecoanet, MattHotze et al.
    2005. Comparison of Electrokinetic Properties of Colloidal Fullerenes (n-C60) Formed Using Two Procedures. Environmental Science & Technology39 (17): 6343–6351. http://dx.doi.org/10.1021/es050090d.
    [Google Scholar]
  11. Burdick, G.M., N.S.Berman, S.P.Beaudoin
    . 2001. Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number. Journal of Nanoparticle Research3 (5): 453–465. http://dx.doi.org/10.1023/A:1012593318108.
    [Google Scholar]
  12. Caldelas, F.M.
    . 2010. Experimental Parameter Analysis of Nanoparticle Retention in Porous Media. Master, University of Texas at Austin, Austin, Texas.
    [Google Scholar]
  13. Caldelas, Federico Manuel, MichaelMurphy, ChunHuh et al.
    2011. Factors Governing Distance of Nanoparticle Propagation in Porous Media. Presented at the SPE Production and Operations Symposium, Oklahoma City, 27–29 March, http://dx.doi.org/10.2118/142305-MS.
    [Google Scholar]
  14. Churaev, NV, BVDerjaguin
    . 1985. Inclusion of structural forces in the theory of stability of colloids and films. Journal of colloid and interface science103 (2): 542–553.
    [Google Scholar]
  15. Derjaguin, B., L.Landau
    . 1993. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress in Surface Science43 (1): 30–59. http://dx.doi.org/10.1016/0079-6816(93)90013-L.
    [Google Scholar]
  16. Ding, Wuquan, XinminLiu, LiSong et al.
    2014. An approach to estimate the position of the shear plane for colloidal particles in an electrophoresis experiment. Surface Science632: 50–59. http://dx.doi.org/10.1016/j.susc.2014.08.024.
    [Google Scholar]
  17. Elimelech, M., J.Gregory, X.Jia et al.
    1995. Chapter 3 - Surface interaction potentials. In Particle Deposition & Aggregation, 33–67. Woburn, Butterworth-Heinemann.
    [Google Scholar]
  18. Ersoy, Bahri
    . 2005. Effect of pH and polymer charge density on settling rate and turbidity of natural stone suspensions. International Journal of Mineral Processing75 (3–4): 207–216. http://dx.doi.org/10.1016/j.minpro.2004.08.011.
    [Google Scholar]
  19. EsfandyariBayat, Ali, Radzuan Junin, ShahaboddinShamshirband et al.
    2015. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks. Scientific Reports5 (14264). http://dx.doi.org/10.1038/srep14264.
    [Google Scholar]
  20. Fisher, Matthew L. , MiroslavColic, Masa P.Rao et al.
    2001. Effect of Silica Nanoparticle Size on the Stability of Alumina/Silica Suspensions. Journal of the American Ceramic Society84 (4): 713–718. http://dx.doi.org/10.1111/j.1151-2916.2001.tb00731.x.
    [Google Scholar]
  21. Ghosh, Pallab
    . 2009. Colloid and interface science. In, Chap. 5. PHI Learning Pvt. Ltd.
    [Google Scholar]
  22. Gregory, John
    . 1981. Approximate expressions for retarded van der waals interaction. Journal of Colloid and Interface Science83 (1): 138–145. http://dx.doi.org/10.1016/0021-9797(81)90018-7.
    [Google Scholar]
  23. Hendraningrat, Luky, O.Torsæter
    . 2014. Understanding Fluid-Fluid and Fluid-Rock Interactions in the Presence of Hydrophilic Nanoparticles at Various Conditions. Presented at the SPE Asia pacific oil & gas conference and Exhbition, Adelaide, Australia, 14–16 October, http://dx.doi.org/10.2118/171407-MS.
    [Google Scholar]
  24. Huang, Tianping, James B.Crews, JohnRobert Willingham
    . 2008. Using Nanoparticle Technology to Control Fine Migration. Presented at the SPE annual technical conference and exhibition, Denver, Colorado, 12–14 June, http://dx.doi.org/10.2118/115384-MS.
    [Google Scholar]
  25. Hubbe, Martin A.
    1984. Theory of detachment of colloidal particles from flat surfaces exposed to flow. Colloids and Surfaces12: 151–178. http://dx.doi.org/10.1016/0166-6622(84)80096-7.
    [Google Scholar]
  26. Johnson, Philip R. , MenachemElimelech
    . 1995. Dynamics of Colloid Deposition in Porous Media: Blocking Based on Random Sequential Adsorption. Langmuir11 (3): 801–812. http://dx.doi.org/10.1021/la00003a023.
    [Google Scholar]
  27. Ju, Binshan, TailiangFan
    . 2009. Experimental study and mathematical model of nanoparticle transport in porous media. Powder Technology192 (2): 195–202. http://dx.doi.org/10.1016/j.powtec.2008.12.017.
    [Google Scholar]
  28. Mahmoud, Omar, HishamA. Nasr-El-Din, Zisis Vryzas et al.
    2016. Nanoparticle-Based Drilling Fluids for Minimizing Formation Damage in HP/HT Applications. Presented at the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 24–26 Februaryhttp://dx.doi.org/10.2118/178949-MS.
    [Google Scholar]
  29. Mandel, K., Stra, T. Granath et al.
    2015. Surfactant free superparamagnetic iron oxide nanoparticles for stable ferrofluids in physiological solutions. Chemical Communications51 (14): 2863–2866. http://dx.doi.org/10.1039/C4CC09277E.
    [Google Scholar]
  30. McElfresh, Paul M, DavidLee Holcomb, DanielEctor
    . 2012. Application of Nanofluid Technology to Improve Recovery in Oil and Gas Wells. Presented at the SPE international oilfield nanotechnology conference, Noordwijk, The Netherlands, 12–14 June, http://dx.doi.org/10.2118/154827-MS.
    [Google Scholar]
  31. O’Neill, M. E.
    1968. A sphere in contact with a plane wall in a slow linear shear flow. Chemical Engineering Science23 (11): 1293–1298. http://dx.doi.org/10.1016/0009-2509(68)89039-6.
    [Google Scholar]
  32. Ohshima, Hiroyuki
    . 1994. A Simple Expression for Henry’s Function for the Retardation Effect in Electrophoresis of Spherical Colloidal Particles. Journal of Colloid and Interface Science168 (1): 269–271. http://dx.doi.org/10.1006/jcis.1994.1419.
    [Google Scholar]
  33. Oldham, Keith B.
    2008. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. Journal of Electroanalytical Chemistry613 (2): 131–138. http://dx.doi.org/10.1016/j.jelechem.2007.10.017.
    [Google Scholar]
  34. Pashley, R. M.
    1982. Hydration forces between mica surfaces in electrolyte solutions. Advances in Colloid and Interface Science16 (1): 57–62. http://dx.doi.org/10.1016/0001-8686(82)85006-9.
    [Google Scholar]
  35. Pashley, Richard M, Jacob NIsraelachvili
    . 1984. Molecular layering of water in thin films between mica surfaces and its relation to hydration forces. Journal of colloid and interface science101 (2): 511–523.
    [Google Scholar]
  36. Pfeiffer, Christian, ChristophRehbock, DominikHühn et al.
    2014. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. Journal of The Royal Society Interface11 (96). http://dx.doi.org/10.1098/rsif.2013.0931.
    [Google Scholar]
  37. Rahman, Tanzina, HarryMillwater, Heather J.Shipley
    . 2014. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Science of The Total Environment499: 402–412. http://dx.doi.org/10.1016/j.scitotenv.2014.08.073.
    [Google Scholar]
  38. Revil, A., H.Schwaeger, L. M.Cathles et al.
    1999. Streaming potential in porous media: 2. Theory and application to geothermal systems. Journal of Geophysical Research: Solid Earth104 (B9): 20033–20048. http://dx.doi.org/10.1029/1999JB900090.
    [Google Scholar]
  39. Ruckenstein, Eli, Dennis C.Prieve
    . 1976. Adsorption and desorption of particles and their chromatographic separation. AIChE Journal22 (2): 276–283. http://dx.doi.org/10.1002/aic.690220209.
    [Google Scholar]
  40. Ryan, Joseph N. , MenachemElimelech
    . 1996. Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects107: 1–56. http://dx.doi.org/10.1016/0927-7757(95)03384-X.
    [Google Scholar]
  41. Ryan, Joseph N. , Philip M.Gschwend
    . 1994. Effects of Ionic Strength and Flow Rate on Colloid Release: Relating Kinetics to Intersurface Potential Energy. Journal of Colloid and Interface Science164 (1): 21–34. http://www.sciencedirect.com/science/article/pii/S0021979784711398.
    [Google Scholar]
  42. Shen, Chongyang, BaoguoLi, YuanfangHuang et al.
    2007. Kinetics of Coupled Primary- and Secondary-Minimum Deposition of Colloids under Unfavorable Chemical Conditions. Environmental Science & Technology41 (20): 6976–6982. http://dx.doi.org/10.1021/es070210c.
    [Google Scholar]
  43. Spielman, Lloyd A. , S. K.Friedlander
    . 1974. Role of the electrical double layer in particle deposition by convective diffusion. Journal of Colloid and Interface Science46 (1): 22–31. http://dx.doi.org/10.1016/0021-9797(74)90021-6.
    [Google Scholar]
  44. Thongmoon, M., R.McKibbin
    . 2006. A comparison of some numerical methods for the advection-diffusion equation - See more at: . Research Letters in the Information and Mathematical Sciences10: 49–62. http://mro.massey.ac.nz/handle/10179/4485#sthash.TnnB2Iv4.dpuf.
    [Google Scholar]
  45. van den Vlekkert, Hans, LucBousse, Nicode Rooij
    . 1988. The temperature dependence of the surface potential at the Al2O3/electrolyte interface. Journal of Colloid and Interface Science122 (2): 336–345. http://dx.doi.org/10.1016/0021-9797(88)90369-4.
    [Google Scholar]
  46. Verwey, E. J. W., J. Th. G.Overbeek
    . 1948. Theory of the stability of lyophobic colloids. Amsterdam, Elsevier Publishing Co. (Reprint).
    [Google Scholar]
  47. Visser, J.
    1995. PARTICLE ADHESION AND REMOVAL: A REVIEW. Particulate Science and Technology13 (3–4): 169–196. http://dx.doi.org/10.1080/02726359508906677.
    [Google Scholar]
  48. Yao, Kuan-Mu, Mohammad T.Habibian, Charles R.O’Melia
    . 1971. Water and waste water filtration. Concepts and applications. Environmental Science & Technology5 (11): 1105–1112. http://dx.doi.org/10.1021/es60058a005.
    [Google Scholar]
  49. Yu, Jianjia, ChengAn, DiMo et al.
    2012. Study of Adsorption and Transportation Behavior of Nanoparticles in Three Different Porous Media. Presented at the SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, 14–18 April, http://dx.doi.org/10.2118/153337-MS.
    [Google Scholar]
  50. Zhang, T.
    . 2012. Modeling of Nanoparticle Transport in Porous Media. Ph.D., University of Texas at Austin, Austin, Texas.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201700233
Loading
/content/papers/10.3997/2214-4609.201700233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error