1887

Abstract

Summary

The research project portfolio of The National IOR Centre of Norway includes core scale, mineral-fluid reactions at micron-/nano-scale, pore scale, upscaling and environmental impact, tracer technology, reservoir simulation tools and field scale evaluation and history matching. The complexity of each subtopic and the fact that a multitude of data, scales and disciplines is involved may be an obstacle in proper integration of the research results. For the same reasons, exploiting synergies between the various IOR research projects may be a difficult task. At the same time, a collaborative setup like The National IOR Centre of Norway should enable integrated case studies across scales and disciplines.

In this paper, we investigate the relationships between the different IOR research projects within The National IOR Centre of Norway. An important objective of the presented work is to facilitate integration and motivate research that falls between the typical disciplines and projects involved in an IOR case study. To make the relationships between projects more evident, the projects are described in terms of input and output related to testing, measuring, simulating, monitoring, predicting, and optimizing fluid flow in a reservoir. The ultimate goal of the integrated IOR research is to provide a framework for monitoring, evaluating and understanding the effects of an IOR method tested in a field pilot. The presented work links simulation and history matching of fluid flow, geomechanics and geochemical effects to lab measurements, pore scale and core scale modeling, tracer characteristics, production data and 4D seismic.

As part of the process, two generic case studies are defined, one for a chalk reservoir and one for a sandstone reservoir. The reservoir characteristics are chosen to be representative for fields on the Norwegian Continental Shelf. Two selected IOR methods are discussed; smart water injection and polymer injection.

The paper is a result of a collaborative effort involving researchers from both academia, research institutions and the oil industry.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201700260
2017-04-24
2020-09-28
Loading full text...

Full text loading...

References

  1. Aghaeifar, Zahra; Strand, Skule; Austad, Tor; Puntervold, Tina; Aksulu, Hakan; Navratil, Kine C.; Storås, Silje; Håmsø, Dagny
    . Influence of formation water salinity/composition on the low-salinity enhanced oil recovery effect in high-temperature sandstone reservoirs. Energy & Fuels2015; Volume 29.(8) s. 4747–4754
    [Google Scholar]
  2. Ahsan, R., M. V.Madland, F.Bratteli and A.Hiorth
    (2012). A study of sulphate ions - effects on ageing and imbibition capillary pressure curve. SCA. Aberdeen.
    [Google Scholar]
  3. Al-Abbad, M.; Sanni, M.; Kokal, S.; Krivokapic, A.C.; Dugstad, Ø.; Hartvig, S. and Huseby, O.
    A Step-Change for Single Well Chemical Tracer Tests (SWCTT): Field Pilot Testing of New Sets of Novel Tracers. SPE-181408-MS, SPE Annual Technical Conference and Exhibition, 26–28 September 2016, Dubai, UAE
    [Google Scholar]
  4. Alcorn, Z.P., Fredriksen, S., Sharma, M., Fernø, M.A. and Graue, A.
    2017, CO2 Foam EOR Field Pilot in a Mature Oil Field: Pilot Design, Geologic and Reservoir Modeling, Laboratory Investigations, and Application of a Reservoir Management Workflow. IOR NORWAY 2017, 19th European Symposium on Improved Oil Recovery 24–27 April 2017, Stavanger, Norway
    [Google Scholar]
  5. Andersen, P.Ø., Evje, S.
    [2016]. A model for reactive flow in fractured porous media. Chemical Engineering Science, 2016, 145, p196–213. DOI: 10.1016/j.ces.2016.02.008
    https://doi.org/10.1016/j.ces.2016.02.008 [Google Scholar]
  6. Andersen, P.Ø., Evje, S., Ahsan, R., Hiorth, A.
    [2015]. An Analytical Model for Imbibition Experiments with Porous Plate. In: IOR 2015 – 18th European Symposium on Improved Oil Recovery Dresden, Germany, 14–16 April 2015. DOI: 10.3997/2214‑4609.201412112
    https://doi.org/10.3997/2214-4609.201412112 [Google Scholar]
  7. Andersen, P.Ø., Evje, S., Kleppe, H., Skjæveland, S.M.
    [2015]. A Model for Wettability Alteration in Fractured Reservoirs. SPE Journal20 (06), p1261–1275. DOI: 10.2118/174555‑PA
    https://doi.org/10.2118/174555-PA [Google Scholar]
  8. Austad, Tor; Shariatpanahi, Seyed Farzad; Strand, Skule; Aksulu, Hakan; Puntervold, Tina
    . Low Salinity EOR Effects in Limestone Reservoir Cores Containing Anhydrite: A Discussion of the Chemical Mechanism. Energy & Fuels2015; Volume 29.(11) s.6903–6911
    [Google Scholar]
  9. Bhakta, Tuhin; Luo, Xiaodong; Nævdal, Geir
    (2016) Ensemble based 4D seismic history matching using a sparse representation of AVA data. SEG Technical Program Expanded Abstracts2016: pp. 2961–2966. doi: 10.1190/segam2016‑13943719.1
    https://doi.org/10.1190/segam2016-13943719.1 [Google Scholar]
  10. Bhakta, Tuhin
    . (2015) Better estimation of pressure-saturation changes from time-lapse PP-AVO data by using non-linear optimization method. SEG Technical Program Expanded Abstracts2015: pp. 5456–5460. doi: 10.1190/segam2015‑5900283.1
    https://doi.org/10.1190/segam2015-5900283.1 [Google Scholar]
  11. Borromeo, L., Zimmermann, U., Andò, S., Coletti, G., Bersani, D., Basso, D., PaoloGentile3, Schulz, B., Garzanti, E.
    2017. Raman Spectroscopy as a tool for magnesium estimation in Mg-calcite. Journal of Raman Spectroscopy (accepted)
    [Google Scholar]
  12. Brattekås, B., Fernø, M.A.
    2016. New Insight from Visualization of Mobility Control for Enhanced Oil Recovery Using Polymer Gels and Foams. In: ROMERO-ZÈRON, L. (ed.) Chemical Enhanced Oil Recovery (cEOR) - a Practical Overview. InTech.
    [Google Scholar]
  13. Brattekås, B., Pedersen, S.G., Nistov, H.T., Haugen, A., GraueA., Liang, J.-T., and Seright, R. S.
    2015b. Washout of Cr(III)-Acetate-HPAM Gels From Fractures: Effect of Gel State During Placement. SPE Production & Operations, 30, 99–109.
    [Google Scholar]
  14. Brattekås, Bergit
    (2016a); Graue, Arne; Seright, Randall S.Low-salinity chase waterfloods improve performance of Cr(III)-acetate hydrolyzed polyacrylamide gel in fractured cores. SPE Reservoir Evaluation and Engineering 2016; Volume 19.(2) s. 331–339
    [Google Scholar]
  15. (2016b); Steinsbø, Marianne; Graue, Arne; Fernø, Martin; Espedal, Heidi; Seright, Randall S.New Insight to Wormhole Formation in Polymer Gel during Water Chasefloods using Positron Emission Tomography (PET). SPE Journal 2016
    [Google Scholar]
  16. Bruchbacher, Julia Maria Inés; Kleppe, Hans; Skjæveland, S.M.
    Modelling of the Full Envelope of Capillary Pressure Curves From the Sentrifuge. Modelling of the Full Envelope of Capillary Pressure Curves From the Sentrifuge International Symposium of the Society of Core Analysts; 2014-09-08 – 2014-09-11
    [Google Scholar]
  17. Dernaika, Moustafa R. ; Kalam, Mohammed Z.; Basioni, Mahmoud A.; Skjæveland, Svein Magne
    . Hysteresis of Capillary Pressure, Resistivity Index and Relative Permeability in Different Carbonate Rock Types”, Petrophysics2012 ;Volum 53(5) Suppl. October s. 315–331
    [Google Scholar]
  18. Dernaika, MR; Basioni, MA; Dawoud, A.; Kalam, MZ; Skjæveland, SM.
    Variations in Bounding and Scanning Relative Permeability Curves With Different Carbonate Rock type. SPE Reservoir Evaluation and Engineering2013”;Volum 16.(3) p 265–280
    [Google Scholar]
  19. Dernaika, MR; Efnik, MS; Koronfol, S; Skjæveland, SM; Al Mansoori, MM.; Hafez, H; Kalam, MZ
    : Capillary Pressure and Resistivity Index Measurements in a Mixed-Wet Carbonate Reservoir. Petrophysics2014; Vol 55 (1) p 24–30
    [Google Scholar]
  20. Dernaika, MR; Wilson, OB; Skjæveland, SM; Ebeltoft, E.
    Drainage Capillary Pressure and Resistivity Index from Short-Wait Porous-Plate Experiments. Petrophysics2016; Vol 57(4) p 369–376
    [Google Scholar]
  21. Egeland, N., Minde, M.W., Kobayashi, K., Ota, T., Nakamura, E., Zimmermann, U., Madland, M.V., Korsnes, R.I.
    2017. Quantification of mineralogical changes in flooded carbonate under reservoir conditions. IOR NORWAY 2017, 19th European Symposium on Improved Oil Recovery 24–27 April 2017, Stavanger, Norway
    [Google Scholar]
  22. Eikrem, K.S., Nævdal, G., Jakobsen, M., Chen, Y.
    Bayesian estimation of reservoir properties— effects of uncertainty quantification of 4D seismic data. Computational Geoscience (2016), Volume 20, Issue 6, pp 1211–1229. doi:10.1007/s10596‑016‑9585‑0
    https://doi.org/10.1007/s10596-016-9585-0 [Google Scholar]
  23. Gullfaks demo data set for PETREL™ 2015.1
    . Schlumberger Software Integrated Solutions, courtesy of Statoil.
    [Google Scholar]
  24. Fernø, M.A., Haugen, Å., Brattekås, B., Mason, G., and Morrow, N.R.
    2015a. Quick and Affordable SCAL: Spontaneous Core Analysis. The International Symposium of the Society of Core Analysts. St. John’s, Newfoundland&Labrador, Canada.
    [Google Scholar]
  25. Fernø, M.A., Haugen, Å., Brattekås, B., Morrow, N.R., and Mason. G.
    2015b. Spontaneous Imbibition Revisited: A New Method to Determine Relative Permeability and Capillary Pressure by Inclusion of the Capillary Backpressure. EAGE 18th European Symposium on Improved Oil Recovery. Dresden, Germany.
    [Google Scholar]
  26. Fjelde, Ingebret; Omekeh, Aruoture Voke; Minde, Mona Wetrhus
    . (2015a) Removal of Mud Components from Reservoir Sandstone Rocks. SCA2015-016. International Symposium of the Society of Core Analyst. 2015‑08‑16‑2015‑08‑21.
    https://doi.org/2015-08-16-2015-08-21 [Google Scholar]
  27. Fjelde, Ingebret; Åsen, Siv Marie
    . (2015b) Effect of Initial Sulfate in Reservoir Chalks on the Spontaneous Imbibition of Sea Water. Tu B05. 18th European Symposium on Improved Oil Recovery; 2015‑04‑14‑2015‑04‑16
    https://doi.org/2015-04-14-2015-04-16 [Google Scholar]
  28. Haukås, Jarle; Bakke, Jan Øystein Haavig, Sonneland, Lars
    . Well Performance Diagnostics by Integrating 4D Seismic in a Coupled Reservoir Fluid Flow / Geomechanical Model, 71st EAGE Conference & Exhibition, Amsterdam2009, Extended abstracts
    [Google Scholar]
  29. Hiorth, A., E.Jettestuen, L. M.Cathles and M. V.Madland
    (2013). Precipitation, dissolution, and ion exchange processes coupled with a lattice Boltzmann advection diffusion solver. Geochimica et Cosmochimica Acta104: 99–110.
    [Google Scholar]
  30. Hiorth, A., L. M.Cathles and M. V.Madland
    (2010). The Impact of Pore Water Chemistry on Carbonate Surface Charge and Oil Wettability. The Impact of Pore Water Chemistry on Carbonate Surface Charge and Oil Wettability85(1): 1–21.
    [Google Scholar]
  31. Hiorth, Aksel
    (2016a); Sagen, Jan; Lohne, Arild; Nossen, Jan; Omekeh, Aruoture Voke; Stavland, Arne; Haukås, Jarle; Sira, Terje. Simulating gelation of silica for in-depth reservoir plugging using IORSim as an add-on tool to ECLIPSE. IEA EOR 2016
    [Google Scholar]
  32. (2016b); Sagen, Jan; Lohne, Arild; Nossen, Jan; Vinningland, Jan Ludvig; Jettestuen, Espen; Sira, Terje. IORSim - A Simulator for Fast and Accurate Simulation of Multi-phase Geochemical Interactions at the Field Scale. I: ECMOR XV - Proceedings of 15th European Conference on the Mathematics of Oil Recovery, Amsterdam, Netherlands, 29 August – 1 September, 2016. European Association of Geoscientists and Engineers 2016 ISBN 978-94-6282-193-4.
    [Google Scholar]
  33. Hong, A., BratvoldR. B., and Nævdal, G.
    2016: Robust production optimization with capacitance-resistance model as precursor. ECMOR XV – 15th European Conference on Mathematics of Oil Recovery, Amsterdam, August 29–September 1.
    [Google Scholar]
  34. Hopkins, Paul Andrew (a); Strand, Skule; Puntervold, Tina; Austad, Tor; Dizaj, S. R.; Waldeland, J. O.; Simonsen, J. C.
    The adsorption of polar components onto carbonate surfaces and the effect on wetting. Journal of Petroleum Science and Engineering2016; Volume 147. s.381–387
    [Google Scholar]
  35. Hopkins, Paul Andrew (b) ; Walrond, Kenny; Strand, Skule; Puntervold, Tina; Austad, Tor; Wakwaya, Abdi Hundasa
    . Adsorption of acidic crude oil components onto outcrop chalk at different wetting conditions during both dynamic adsorption and aging processes. Energy & Fuels2016; Volume 30.(9) s.7229–7235
    [Google Scholar]
  36. Kjøller, Claus; Sigalas, Lykourgos; Christensen, Helle Foged; Minde, Mona Wetrhus
    . A Fast Method for Homogeneous Dissolution of Chalk Specimens for Laboratory Experiments – Documentation by X-Ray CTscanning and Scanning Electron Microscopy. SCA Annual Symposium; 2016‑08‑21‑2016‑08‑26 IRIS UIS
    https://doi.org/2016-08-21-2016-08-26 [Google Scholar]
  37. Klöfkorn, R.; Kvashchuk, A.; Nolte, M.
    Comparison of Linear Reconstructions for Second Order Finite Volume Schemes on Polyhedral Grids. ECMOR XV - Proceedings of 15th European Conference on the Mathematics of Oil Recovery, Amsterdam,Netherlands, 2016.
    [Google Scholar]
  38. Lie, K.-A.; Mykkeltvedt, T.; Raynaud, X.
    Fully Implicit Higher-order Schemes Applied to Polymer Flooding. I: ECMOR XV - Proceedings of 15th European Conference on the Mathematics of Oil Recovery, Amsterdam, Netherlands, 2016.
    [Google Scholar]
  39. Luo, X. (2016a), Bhakta, T., Jakobsen, M., and Nævdal, G.
    (2016). An Ensemble 4D-Seismic History-Matching Framework With Sparse Representation Based On Wavelet Multiresolution Analysis. SPE Journal, doi:10.2118/180025‑PA.
    https://doi.org/10.2118/180025-PA [Google Scholar]
  40. Luo, X.
    (2016b), Bhakta, T., Jakobsen, M., and Nsevdal, G.. An Ensemble 4D Seismic History Matching Framework with Wavelet Multiresolution Analysis - A 3D Benchmark Case Study. ECMOR XV, 2016.
    [Google Scholar]
  41. Madland, M. V., A.Hiorth, E.Omdal, M.Megawati, T.Hildebrand-Habel, R. I.Korsnes, S.Evje and L. M.Cathles
    (2011). Chemical Alterations Induced by Rock-Fluid Interactions When Injecting Brines in High Porosity Chalks. Transport in Porous Media87(3): 679–702.
    [Google Scholar]
  42. Madland, Merete Vadla; Hiorth, Aksel
    . Mastering the EOR challenges. Upstream2016 s. 75–77
    [Google Scholar]
  43. Megawati, M. V. Madland, A. Hiorth
    . Mechanical and physical behavior of high-porosity chalks exposed to chemical perturbation. J. Pet. Sci. Eng. 133, 313–327 (2015)
    [Google Scholar]
  44. Megawati, M., A.Hiorth and M. V.Madland
    (2013). The Impact of Surface Charge on the Mechanical Behavior of High-Porosity Chalk. Rock Mechanics and Rock Engineering46(5): 1073–1090.
    [Google Scholar]
  45. Minde, M.W., Haser, S., Korsnes, R.I., Zimmermann, U., Madland, M.V.
    2017. Comparative Studies of Mineralogical Alterations of Three Ultra-Long-Term Flooding Tests of On-shore Chalk at Reservoir Conditions. IOR NORWAY 2017, 19th European Symposium on Improved Oil Recovery 24–27 April 2017, Stavanger, Norway
    [Google Scholar]
  46. Minde, Mona Wetrhus; Zimmermann, Udo; Madland, Merete Vadla; Korsnes, Reidar Inge; Schulz, Bernhard; Audinot, Jean-Nicolas
    . Fluid-flow during EOR experiments in chalk: insights using SEM-MLA, EMPA and nanoSIMS applications. SCA annual symposium; 2016-08-21 – 2016-08-26UIS IRIS
    [Google Scholar]
  47. Mohammed, M. and Babadagli, T.
    2015. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems. Advances in Colloid and Interface Science220: 54–77.
    [Google Scholar]
  48. Nair, Remya., Protasova, Evgenia., Bilstad, Torleiv
    . Applicability and Costs of Nanofiltration for Produced Water Reinjection for EOR. Industrial and Hazardous Waste Management2016. ISSN 2241–3138. ISBN: 978-960-8475-24-3. p. 265–266
    [Google Scholar]
  49. Nair, Remya., Protasova, Evgenia., Bilstad, Torleiv., Saltveit, Kjerstin J.
    , Improved Oil Production by Membranes, AGH Drilling Oil Gas2015; Volume 32 (1) p. 221–232. ISSN 2299–4157. DOI:org/10.7494/drill.2015.32.1.221.
    https://doi.org/org/10.7494/drill.2015.32.1.221 [Google Scholar]
  50. Nair, Remya., Protasova, Evgenia., Strand, Skule., Bilstad, Torleiv
    ., Reuse of Produced Water by Membranes for Enhanced Oil Recovery, SPE Annual Technical Conference and Exhibition, 26–28September, Dubai, UAE. Society of Petroleum Engineers 2016. ISBN 978-1-61399-463-4. DOI: 10.2118/181588‑MS.
    https://doi.org/26–28 September [Google Scholar]
  51. Nermoen, A., R. I.Korsnes, A.Hiorth and M. V.Madland
    (2015). Porosity and permeability development in compacting chalks during flooding of nonequilibrium brines: Insights from long-term experiment. Journal of Geophysical Research - Solid Earth120(5): 2935–2960.
    [Google Scholar]
  52. Nermoen, Anders; Korsnes, Reidar I.; Christensen, Helle Foged; Traeds, Niels; Hiorth, Aksel, Madland, Merete V.ARMA 13-282
    . Measuring the Biot coefficient and its implications on the effective stress estimate. The 47th U.S. Rock Mechanics / Geomechanics Symposium in San Francisco2013
    [Google Scholar]
  53. Nermoen, Anders; Korsnes, Reidar Inge; AursjøOlav; Madland, Merete Vadla, Kjørslevik, Trygve Alexander Carlsen; Østensen, Geir
    . How stress and temperature conditions affect rock-fluid chemistry and mechanical deformation. Frontiers in Physics, February 2016, volume 4, Article 2, doi:10.3389/fphy.206.00002
    https://doi.org/10.3389/fphy.206.00002 [Google Scholar]
  54. Nermoen, Anders; Korsnes, Reidar Inge; Haug, S.A.H. Aloysius; Hiorth, Aksel; Madland, Merete Vadla
    . The Dynamic Stability of Chalks During Flooding of Non-Equilibrium Brines and CO2. I: 4th EAGE CO2 Geological Storage Workshop 2014. European Association of Geoscientists and Engineers2014 ISBN 9781632665386. s.122–127
    [Google Scholar]
  55. Neuville, A., L.Renaud, T. T.Luu, J. L.Vinningland, E.Jettestuen, D. K.Dysthe and A.Hiorth
    (2016). Xurography for microfluidics in reactive systems: the example of the calcite dissolution.
    [Google Scholar]
  56. Niebling, M., Haukås, J., Nickel, M., and Bakke, J.
    Detailed Modeling of Injection and Production Induced Rock Displacements. IOR NORWAY 2017, 19th European Symposium on Improved Oil Recovery 24–27 April 2017, Stavanger, Norway
    [Google Scholar]
  57. Nødland, Oddbjørn Mathias; Lohne, Arild; Stavland, Arne; Hiorth, Aksel
    . A Model for Non-Newtonian Flow in Porous Media at Different Flow Regimes. I: ECMOR XV - Proceedings of 15th European Conference on the Mathematics of Oil Recovery, Amsterdam, Netherlands, 29 August – 1 September 2016. European Association of Geoscientists and Engineers 2016 ISBN 978-94-6282-193-4.
    [Google Scholar]
  58. Opsahl, Eystein; Kommedal, Roald
    . Literature review (short): Fate and effect of produced water containing EOR-polymers. I: 5th international conference on industrial and hazardous Waste management. Technical University of Crete Chania Crete Greece2016 ISBN 978-960-8475-24-3. s. 163–164
    [Google Scholar]
  59. Osmundsen, Petter
    (2013a) Choice of Development Concept - Platform or Subsea Solution? Implications for the Recovery Factor. Oil and Gas Facilities2013; Volume 2.(5) s. 64–70
    [Google Scholar]
  60. . Innovative og robuste strategier for rigganskaffelse. Hvem skal eie?. Praktisk økonomi og finans2015 ;Volum 31 [i.e. 32].(1) s. 64–79
    [Google Scholar]
  61. . Cuts threaten output at producing fields. Upstream: the international oil & gas newspaper2014.
    [Google Scholar]
  62. (2013b) Contracts and Incentives Innovation in Norway’s Offshore Sector”. International journal of economics and management engineering2013; Volume 3. (6) s. 254–261
    [Google Scholar]
  63. Osmundsen, Petter; Johnsen, Thore; Emhjellen, Magne
    . Mens vi venter på Godot : petroleumsskatt - proveny eller opplæring?. Samfunnsøkonomen2013 ;Volum 127.(8) s. 32–43
    [Google Scholar]
  64. Pedersen, J., Jettestuen, E., Vinningland, J. L., Madland, M.V. and Hiorth, A.
    Pore Scale Modeling of Brine Dependent Permeability. Paper SCA2013-064 presented at the International Symposium of the Society of Core Analysts held in Napa Valley, California, USA, 16–19September, 2013
    [Google Scholar]
  65. Pedersen, Janne; Jettestuen, Espen; Madland, Merete V.; Hildebrand-Habel, Tania; Korsnes, Reidar I.; Vinningland, Jan Ludvig; Hiorth, Aksel
    . A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods. Advances in Water Resources. Volume 87, 313–327 (2016).
    [Google Scholar]
  66. Protasova, Evgenia, Nair, Remya, Bilstad, Torleiv
    . Oily waste regulations and best available technologies for sustainable development. Industrial and Hazardous Waste Management2016. ISSN 2241-3138. ISBN: 978-960-8475-24-3. p. 357–358
    [Google Scholar]
  67. Puntervold, Tina; Strand, Skule; Ellouz, Raed; Austad, Tor
    . Modified seawater as a smart EOR fluid in chalk. Journal of Petroleum Science and Engineering2015; Volume 133. s.440–443
    [Google Scholar]
  68. Ringen, Irene; Stiegler, Hjørdis; Nødland, Oddbjarn Mathias; Hiorth, Aksel; Stavland, Arne
    (2016). Polymer flooding of sandpacks with a dual porosity. The International Symposium of the Society of Core Analysts, Snowmass, Colorado, USA, 21–26 August 2016. SCA2016-022.
    [Google Scholar]
  69. Sachdeva, Jaspreet Singh; Nermoen, Anders; Madland, Merete Vadla; Korsnes, Reidar Inge
    . How Wetting Conditions Dictate Chalk Mechanics at Uni-axial Strain Conditions – Insights from Experiments Performed at In-situ Stress, Temperature and Pore Pressure. International Symposium of the Society of Core Analysts.
    [Google Scholar]
  70. Sharma, M., Taware, S.V. and Datta-Gupta, A.
    [2016] Optimizing CO2 Floods Using Rate Control with Smart Wells under Geologic Uncertainty. Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 7–10 November.
    [Google Scholar]
  71. Sharma, M., Alcorn, Z.P., Fredriksen, S., Fernø, M.A. and Graue, A.
    , 2017. Numerical Modelling Study for Designing CO2 Foam Field Pilot. IOR NORWAY 2017, 19th European Symposium on Improved Oil Recovery24–27 April 2017, Stavanger, Norway
    [Google Scholar]
  72. Standnes, D.C., Evje. S, Andersen, P.Ø.
    [2016]. A novel relative permeability model – A two-fluid approach accounting for solid-fluid and fluid-fluid interactions. In: The International Symposium of the Society of Core Analysts held in Snowmass, Colorado, USA, 21–26 August 2016. SCA2016-060
    [Google Scholar]
  73. Stavland, A., Åsen, S.M., Mebratu, A., and Gathier, F.
    2016. Impact of Choke Valves on the IOR Polymer Flooding: Lessons Learned from Large Scale Tests. IEA-EOR 2016 - 37th Annual Workshop & Symposium, Rueil-Malmaison, France 18–22 September.
    [Google Scholar]
  74. Steinsbø, M., Brattekås, B., Bø, K., Oppdal, I., Tunli, R., Ersland, G., Graue, A, and Fernø, M.A.
    Foam as Mobility Control for Integrated CO2-EOR in Fractured Carbonates. EAGE 18th European Symposium on Improved Oil Recovery, 14 - 6 April 2016 2015 Dresden, Germany.
    [Google Scholar]
  75. Steinsbø, M., Brattekås, B., Ersland, G., Fernø, M.A., and Graue, A.
    Supercritical CO2 injection for enhanced oil recovery in fratured chalk. The International Symposium of the Society of Core Analysts, 7–12 September 2014Avignon, France.
    [Google Scholar]
  76. Stordal, A. S., Szklarz, S. P., and Leeuwenburgh, O.
    2016. A Theoretical look at Ensemble-Based Optimization in Reservoir Management. Mathematical Geosciences, 48 (4): 399–417.
    [Google Scholar]
  77. Strand, S., E. J.Hognesen and T.Austad
    (2006). Wettability alteration of carbonates - Effects of potential determining ions (Ca2+ and SO42-) and temperature. Colloids and Surfaces a- Physicochemical and Engineering Aspects275(1–3): 1–10.
    [Google Scholar]
  78. Strand, Skule; Austad, Tor; Puntervold, Tina; Aksulu, Hakan; Haaland, Bjarne; Rezaeidoust, Alireza
    . Impact of plagioclase on the low salinity EOR-effect in sandstone. Energy & Fuels2014; Volume 28. (4) s.2378–2383
    [Google Scholar]
  79. Strand, Skule; Puntervold, Tina; Austad, Tor
    . Water based EOR from clastic oil reservoirs by wettability alteration: A review of chemical aspects. Journal of Petroleum Science and Engineering2016; Volume 146. s.1079–1091
    [Google Scholar]
  80. Torrijos, Ivan Dario Pinerez
    (2016a); Austad, Tor; Strand, Skule; Puntervold, Tina; Wrobel, S.; Hamon, G.Linking low salinity EOR effects in sandstone to pH, mineral properties and water composition.. SPE Improved Oil Recovery Conference2016.
    [Google Scholar]
  81. Torrijos, Ivan Dario Pinerez (2016b) ; Puntervold, Tina; Strand, Skule; Austad, Tor; Abdullah, Hakar Ihsan; Olsen, Kaia
    . Experimental Study of the Response Time of the Low-Salinity Enhanced Oil Recovery Effect during Secondary and Tertiary Low-Salinity Waterflooding. Energy & Fuels2016; Volum 30.(6) s.4733–4739
    [Google Scholar]
  82. Valestrand, R., Sagen, J., Nævdal, G., & Huseby, O. K.
    (2010, June 1). The Effect of Including Tracer Data in the Ensemble-Kalman-Filter Approach. SPEJ, Volume 15, 2010. doi:10.2118/113440‑PA
    https://doi.org/10.2118/113440-PA [Google Scholar]
  83. Viig, S. O.; Juilla, H.; Renouf, P.; Kleven, R.;; Krognes, B.; Dugstad, O. and Huseby, O. K.
    : Application of a New Class of Chemical Tracers to Measure Oil Saturation in Partitioning Interwell Tracer Tests. SPE Conference Paper -164117-MS, SPE International Symposium on Oilfield Chemistry, 8–10 April 2013, The Woodlands, Texas, USA
    [Google Scholar]
  84. Voake, Tijana; Nermoen, Anders; Korsnes, Reidar Inge; Fabricius, Ida Lykke
    . To What Degree Thermal Cycles Affect Chalk Strength. The International Symposium of the Society of Core Analysts, Snowmass, Colorado, USA, 21–26 August 2016. SCA2016.
    [Google Scholar]
  85. Wang, Wenxia; Madland, Merete V.; Zimmermann, Udo; Nermoen, Anders; Korsnes, Reidar I.; Bertolino, Silvana R. A.; Hildebrand-Habel, Tania
    . Evaluation of porosity change during chemo-mechanical compaction in flooding experiments on Liège outcrop chalk. Geological Society London Special Publications 10/2016; DOI:10.1144/SP435.10
    https://doi.org/10.1144/SP435.10 [Google Scholar]
  86. Work plan
    2016. The National IOR Centre of Norway. http://www.uis.no/getfile.php/IOR-senter/DIGITAL%20Work%20Plan%202016.pdf
  87. Zhang, P. M. and T.Austad
    (2006). Wettability and oil recovery from carbonates: Effects of temperature and potential determining ions. Colloids and Surfaces a-Physicochemical and Engineering Aspects279(1–3): 179–187.
    [Google Scholar]
  88. Zhang, P. M., M. T.Tweheyo and T.Austad
    (2006). Wettability alteration and improved oil recovery in chalk: The effect of calcium in the presence of sulfate. Energy & Fuels20(5): 2056–2062.
    [Google Scholar]
  89. (2007). Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg (2+), and SO42. Colloids and Surfaces a-Physicochemical and Engineering Aspects301(1–3): 199–208.
    [Google Scholar]
  90. Zimmermann, Udo; Madland, Merete Vadla; Nermoen, Anders; Hildebrand-Habel, Tania; Bertolino, Silvana A.R.; Hiorth, Aksel; Korsnes, Reidar Inge; Audinot, Jean-Nicolas; Grysan, Patrick
    . Evaluation of the compositional changes during flooding of reactive fluids using scanning electron microscopy, nano-secondary ion mass spectrometry, x-ray diffraction, and whole-rock geochemistry. American Association of Petroleum Geologists Bulletin2015; Volume 99.(5) s. 791–805
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201700260
Loading
/content/papers/10.3997/2214-4609.201700260
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error