Understanding the chalk-fluid interactions at the sub-micron scale is one of the most challenging goals in Enhanced Oil Recovery. The grain size of newly grown minerals far below 1 micron asks for a high performing imaging: we present a new methodology using the TERS (Tip Enhanced Raman Spectroscopy), a new frontier technique that combines Raman Spectroscopy with Atomic Force Microscopy, allowing impressively high-resolution chemical analyses down to an outstanding spatial resolution (~ 20 nm). TERS permits the recognition of minerals thanks to the vibrational mode peaks that are diagnostic of composition and structure. Carbonate-group minerals are easily identified by Raman spectroscopy. First analyses allow us to state that magnesite and calcite could be identified in, respectively, ultra-long-term flooding experiments of chalk at reservoir conditions and in unflooded samples; no dolomite or high Mg-calcite have been found. Few microns squared areas have been imaged by AFM using ultra polished thin sections with a 50 nanometers step.

Transmission electron microscopy has been employed to confirm the results of TERS and add dark and bright field grain-imaging to the investigations.

This confirms the need for high-resolution methodology such as TERS and TEM to fully understand EOR effects at sub-micron scale.


Article metrics loading...

Loading full text...

Full text loading...


  1. Bischoff, W. D., Sharma & S. K., Mackenzie, F. T.
    , [1985] Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study, Am. Mineral, 70, 581–589.
    [Google Scholar]
  2. Borromeo Raman Spectroscopy as a tool for magnesium estimation in Mg-calcite
    [Google Scholar]
  3. Borromeo, L., Zimmermann, U., Andò, S., Coletti, G., Bersani, D., Egeland, N., Basso, D., Gentile, P., Toccafondi, and C., GarzantiE.
    , [2016] Goldschmidt conference, Yokohama.
    [Google Scholar]
  4. Borromeo, L., Zimmermann, U., Andò, S., Coletti, G., Bersani, D., Basso, D., Gentile, Schulz, B., and GarzantiE., Raman Spectroscopy as a tool for magnesium estimation in Mg – calcite
    , [2017] J. Raman Spectrosc, under revision.
    [Google Scholar]
  5. David, C., Guillot, N., Shen, H., TouryT., and de la Chapelle, M. L.
    , [2010] SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor, Nanotechnology, 21, 475501.
    [Google Scholar]
  6. Félidj, N., Aubard, J., Lévi, G., Krenn, J. R., Salerno, M., Schider, G., Lamprecht, B., Leitner, A., and AusseneggF. R.
    , [2002] Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering, Phys. Rev. B, 65, 075419.
    [Google Scholar]
  7. Lin, W.-I., Shao, F., Stephanidis, B., and Zenobi, R.
    [2015] Tip-Enhanced Raman Spectroscopic Imaging Shows Segregation within Binary Self-Assembled Thiol Monolayers at Ambient Conditions. Anal. Bioanal. Chem.; 407 (27), 8197–8204.
    [Google Scholar]
  8. Megawati, M., Madland, M. V., and Hiorth, A.
    , [2015]. Mechanical and physical behavior of high-porosity chalks exposed to chemical perturbation. Journal of Petroleum Science and Engineering, 133, 313–327.
    [Google Scholar]
  9. Minde, M. W., Zimmermann, U., Madland, M. V., and Korsnes, R. I.
    . [2016] Submicron investigations –What can we learn?. IOR Norway 2016, Stavanger, April 26–27.
    [Google Scholar]
  10. Madland, M., Hiorth, A., Omdal, E., Megawati, M., Hildebrand-Habel, T., Korsnes, R., Evje, S., and Cathles, L.
    [2011]. Chemical Alterations Induced by Rock–Fluid Interactions When Injecting Brines in High Porosity Chalks. Transport in Porous Media, 87(3), 679–702.
    [Google Scholar]
  11. Nermoen, A., Korsnes, R. I., Hiorth, A., and Madland, M. V.
    [2015]. Porosity and permeability development in compacting chalks during flooding of non-equlibrium brines - insights from a long term experiment. Journal of Geophysical Research: Solid Earth, 120, 2935–2960.
    [Google Scholar]
  12. Nie, S.
    [1997] Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science (80), 275 (5303), 1102–1106.
    [Google Scholar]
  13. Pettinger, B.; Ren, B.; Picardi, G.; Schuster, R. and Ertl, G.
    , [2004], Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy. Phys. Rev. Lett., 92 (9), 096101.
    [Google Scholar]
  14. Picardi, G., Kròlikowska, A., Yasukuni, R., Chaigneau, M., Escude, M., Mourier, V., Licitra, C. and Ossikovski, R.
    [2014] Exchange of Methyl- and Azobenzene-Terminated Alkanethiols on Polycrystalline Gold Studied by Tip-Enhanced Raman Mapping. ChemPhysChem, 15 (2), 276–282.
    [Google Scholar]
  15. Raman, C.V. & Krishnan, K. S.
    , [1928], The production of new radiations by light scattering.- Part I. Indian J. Phys., 2, 399.
    [Google Scholar]
  16. Griffith, W.P.
    , [1969], Raman spectroscopy of minerals, Nature, 224, 264–266.
    [Google Scholar]
  17. AndòS., & Garzanti, E.
    , [2013] in Sediment Provenance Studies in Hydrocarbon Exploration and Production., Ed. Geological Society, London, Special Publications, 386.
    [Google Scholar]
  18. Ren, B.; Picardi, G. and Pettinger, B.
    [2004] Preparation of Gold Tips Suitable for Tip-Enhanced Raman Spectroscopy and Light Emission by Electrochemical Etching. Rev. Sci. Instrum., 75(4), 837.
    [Google Scholar]
  19. Stadler, J., Schmid, T., Zenobi, R., Graphene, S., Stadler, J., Schmid, T. and Zenobi, R.
    , [2011] Nanoscale Chemical Imaging of Single-Layer Graphene. ACS Nano, 5 (10), 8442–8448.
    [Google Scholar]
  20. Schultz, Z. D., Marr, J. M. and Wang, H.
    , [2014] Tip Enhanced Raman Scattering: Plasmonic Enhancements for Nanoscale Chemical Analysis. Nanophotonics, 3 (1–2), 91–104.
    [Google Scholar]
  21. Sonntag, M. D., Klingsporn, J. M., Garibay, L. K., Roberts, J. M., Dieringer, J., Seideman, T.; Scheidt, K., Jensen, L., Schatz, G. C. and Van Duyne, R. P.
    , [2012] Single-Molecule Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C, 116 (1), 478.
    [Google Scholar]
  22. Toccafondi, C., Picardi, G., and Ossikovski, R.
    , [2016] Molecular Bending at the Nanoscale Evidenced by Tip-Enhanced Raman Spectroscopy in Tunneling Mode on Thiol Self-Assembled Monolayers, J. Phys. Chem. C, 120 (32), pp 18209–18219.
    [Google Scholar]
  23. Unvros, J., Sharma, S. and Mackenzie, F.
    , [1991], Characterization of some biogenic carbonates with Raman spectroscopy. Am. Mineral., 76, 641–646.
    [Google Scholar]
  24. Wang, W., Madland, M. V., Zimmermann, U., Nermoen, A., Korsnes, R. I., Bertolino, S. R. A., and Hildebrand-Habel, T.
    [2016]. Evaluation of porosity change during chemo-mechanical compaction in flooding experiments on Liege outcrop chalk. Geological Society, London, Special Publications, 435. doi:10.1144/sp435.10.
    https://doi.org/10.1144/sp435.10 [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error