1887

Abstract

Summary

Worldwide polymer flooding (PF) is being introduced as a viable option for increasing recovery rates. In PF projects, back-produced polymer are ideally disposed of by reinjection or injection to a deposit well. However, significant challenges with offshore produced polymer water management creates possibilities for intermittent overboard discharge. If polymers are released to the sea, then how does structure of the polymers change over time and is it important for the marine ecosystem? In spite of the polymers having very low toxicity, the sheer volume of polymer applied in a PF constitutes a major hazard. In addition, the impact and fate of these polymers are largely unknown beyond standardized acute toxicity and biodegradability data. Very few studies on toxicological mechanisms and long-term environmental fate exist, likely because of lacking analytical tools and incentives for in-depth studies. Currently, biodegradability is decisive for chemical classification within the Norwegian offshore environmental regulations. Biopolymers satisfy the criteria, while the non-biodegradable synthetics do not and are as such prohibited from use. Nonetheless, modern PF favor synthetic polymers due to a variety of factors, including concurrent use of biocide. This together with harsh reservoir conditions favors development of physio-chemically stable polymers, impeding environmental performance and complicating risk management. Moreover, the regulations does not take into account that these polymers are especially sensitive to physical and chemical degradation. To begin solving this puzzle we have set up 80-days inherent and ready biodegradability studies on a variety of partially hydrolyzed polyacrylamide derivatives. Respirometry allows for continuous monitoring of biotic degradation. After the end of the experiment, size exclusion chromatography with multi-angle laser light scattering (MALLS) will examine shifts in molecular weight (Mw) distribution. Regarding MALLS limitation on low concentrations and “dirty” samples, we aim to overcome those by applying ultrafiltration techniques capable of isolating and concentrating the Mw-range of interest. The results will yield structure-activity relationships for both aerobe and anaerobe, biotic and abiotic degradation pathways. Preliminary results show that the presence of synthetic polymer does not affect metabolic rates. Which means that if any degradation is observed, it must be through abiotic mechanisms. This study is a part of a larger effort to generate data forming a basis for a mechanistic model that can predict environmental performance based on polymer chain-length and structure. We believe such a model can be made through mentioned long-term degradation studies, mechanistic eco-toxicological studies and state of the art analytical techniques.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201700478
2017-04-24
2024-04-20
Loading full text...

Full text loading...

References

  1. Abdel-Alim, A.H., Hamielec, A.E.
    , 1973. Shear degradation of water-soluble polymers. I. Degradation of polyacrylamide in a high-shear couette viscometer. J. Appl. Polym. Sci. 17, 3769–3778. doi:10.1002/app.1973.070171218
    https://doi.org/10.1002/app.1973.070171218 [Google Scholar]
  2. Abidin, A.Z., Puspasari, T., Nugroho, W.A.
    , 2012. Polymers for Enhanced Oil Recovery Technology. Procedia Chem., The International Conference on Innovation in Polymer Science and Technology 4, 11–16. doi:10.1016/j.proche.2012.06.002
    https://doi.org/10.1016/j.proche.2012.06.002 [Google Scholar]
  3. Acharya, K., Schulman, C., Young, M.H.
    , 2010. Physiological response of Daphnia magna to linear anionic polyacrylamide: Ecological implications for receiving waters. Water. Air. Soil Pollut. 212, 309–317.
    [Google Scholar]
  4. Adamczyk, Z., Bratek, A., Jachimska, B., Jasinski, T., Warszynski, P.
    , 2006. Structure of Poly(acrylic acid) in Electrolyte Solutions Determined from Simulations and Viscosity Measurements. J. Phys. Chem. B110, 22426–22435. doi:10.1021/jp063981w
    https://doi.org/doi:10.1021/jp063981w [Google Scholar]
  5. Aften, C.W., Zhang, Y.J.
    , 2016. Possibility of Flooding Polymer or Water Reuse via Innovative Selective or Total Flocculation of Enhanced Oil Recovery Produced Water. Presented at the SPE Improved Oil Recovery Conference, Society of Petroleum Engineers. doi: 10.2118/179525‑MS
    https://doi.org/10.2118/179525-MS [Google Scholar]
  6. Al Hashmi, A.R., Al Maamari, R.S., Al Shabibi, I.S., Mansoor, A.M., Zaitoun, A., Al Sharji, H.H.
    , 2013. Rheology and mechanical degradation of high-molecular-weight partially hydrolyzed polyacrylamide during flow through capillaries. J. Pet. Sci. Eng. 105, 100–106. doi:10.1016/j.petrol.2013.03.021
    https://doi.org/10.1016/j.petrol.2013.03.021 [Google Scholar]
  7. Al Kalbani, H., Mandhari, M., Al-Hadhrami, H., Philip, G., Nesbit, J., Gil, L., Gaillard, N.
    , 2014. Treating Back Produced Polymer To Enable Use Of Conventional Water Treatment Technologies. Presented at the SPE EOR Conference at Oil and Gas West Asia, Society of Petroleum Engineers.
    [Google Scholar]
  8. Al-Hashmi, A.-A., Al-Maamari, R., Al-Shabibi, I., Mansoor, A., Al-Sharji, H., Zaitoun, A.
    , 2014. Mechanical stability of high-molecular-weight polyacrylamides and an (acrylamido tert-butyl sulfonic acid)– acrylamide copolymer used in enhanced oil recovery. J. Appl. Polym. Sci. 131, n/a-n/a. doi:10.1002/app.40921
    https://doi.org/10.1002/app.40921 [Google Scholar]
  9. Al-saadi, F.S., Al-amri, B.A., Nofli, A., Mubarak, S., Wunnik, V., Nm, J., Jaspers, H.F., Al Harthi, S., Shuaili, K., Cherukupalli, P.K., Chakravarthi, R.
    , 2012. Polymer Flooding in a Large Field in South Oman - Initial Results and Future Plans. Presented at the SPE EOR Conference at Oil and Gas West Asia, Society of Petroleum Engineers. doi: 10.2118/154665‑MS
    https://doi.org/10.2118/154665-MS [Google Scholar]
  10. Antoine, T.
    , 2016. SNF S.A.S. site visit, personal meeting.
    [Google Scholar]
  11. Argillier, J.-F., Henaut, I., Noik, C., Viera, R., Roca Leon, F., Aanesen, B.
    , 2014. Influence Of Chemical Eor On Topside Produced Water Management. Presented at the SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. doi: 10.2118/169067‑MS
    https://doi.org/10.2118/169067-MS [Google Scholar]
  12. Asghari, K., Nakutnyy, P.
    , 2008. Experimental results of polymer flooding of heavy oil reservoirs. Presented at the Canadian International Petroleum Conference, Petroleum Society of Canada.
    [Google Scholar]
  13. Baginski, V., Larsen, D., Waldman, T., Manrique, E., Ravikiran, R.
    , 2015. Logistic Considerations for Safe Execution of Offshore Chemical EOR Projects. Presented at the SPE Asia Pacific Enhanced Oil Recovery Conference, Society of Petroleum Engineers.
    [Google Scholar]
  14. Bai, M., Wilske, B., Buegger, F., Esperschütz, J., Bach, M., Frede, H.-G., Breuer, L.
    , 2014. Relevance of nonfunctional linear polyacrylic acid for the biodegradation of superabsorbent polymer in soils. Environ. Sci. Pollut. Res. 22, 5444–5452. doi:10.1007/s11356‑014‑3772‑0
    https://doi.org/10.1007/s11356-014-3772-0 [Google Scholar]
  15. Bao, M., Chen, Q., Li, Y., Jiang, G.
    , 2010. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field. J. Hazard. Mater. 184, 105–110.
    [Google Scholar]
  16. Biesinger, K.E., Lemke, A.E., Smith, W.E., Tyo, R.M.
    , 1976. Comparative Toxicity of Polyelectrolytes to Selected Aquatic Animals. J. Water Pollut. Control Fed. 48, 183–187. doi: 10.2307/25038478
    https://doi.org/10.2307/25038478 [Google Scholar]
  17. Biesinger, K.E., Stokes, G.N.
    , 1986. Effects of Synthetic Polyelectrolytes on Selected Aquatic Organisms. J. Water Pollut. Control Fed. 58, 207–213.
    [Google Scholar]
  18. Bolto, B., Gregory, J.
    , 2007. Organic polyelectrolytes in water treatment. Water Res. 41, 2301–2324. doi:10.1016/j.watres.2007.03.012
    https://doi.org/10.1016/j.watres.2007.03.012 [Google Scholar]
  19. Bourg, A.C.M., Loch, J.P.G.
    , 1995. Mobilization of Heavy Metals as Affected by pH and Redox Conditions, in: Salomons, P.D.W., Stigliani, P.D.W.M. (Eds.), Biogeodynamics of Pollutants in Soils and Sediments, Environmental Science. Springer Berlin Heidelberg, pp. 87–102. doi:10.1007/978‑3‑642‑79418‑6_4
    https://doi.org/10.1007/978-3-642-79418-6_4 [Google Scholar]
  20. Boysen, B., Henthorne, L., Johnson, H., Turner, B.
    , 2013. New Water-Treatment Technologies Tackle Offshore Produced-Water Challenges in EOR. Oil Gas Facil. 2, 17–23. doi:10.2118/0613‑0017‑OGF
    https://doi.org/10.2118/0613-0017-OGF [Google Scholar]
  21. Bridgewater, S., Goldszal, A., Milani, A.
    , 2016. Polymer EOR - A New HSE Hazard in an Old Industry. Presented at the International Petroleum Technology Conference, International Petroleum Technology Conference. doi:10.2523/IPTC‑18659‑MS
    https://doi.org/10.2523/IPTC-18659-MS [Google Scholar]
  22. Carlson, C.A., Hansell, D.A., Tamburini, C.
    , 2011. DOC persistence and its fate after export within the ocean interior. Microb. Carbon Pump Ocean57–59.
    [Google Scholar]
  23. Caulfield, M.J., Hao, X., Qiao, G.G., Solomon, D.H.
    , 2003a. Degradation on polyacrylamides. Part II. Polyacrylamide gels. Polymer44, 3817–3826. doi:10.1016/S0032‑3861(03)00330‑6
    https://doi.org/10.1016/S0032-3861(03)00330-6 [Google Scholar]
  24. , 2003b. Degradation on polyacrylamides. Part I. Linear polyacrylamide. Polymer44, 1331–1337.
    [Google Scholar]
  25. Caulfield, M.J., Qiao, G.G., Solomon, D.H.
    , 2002. Some aspects of the properties and degradation of polyacrylamides. Chem. Rev. 102, 3067–3084.
    [Google Scholar]
  26. Chen, H., Tang, H., Gong, X., Wang, J., Liu, Y., Duan, M., Zhao, F.
    , 2015. Effect of partially hydrolyzed polyacrylamide on emulsification stability of wastewater produced from polymer flooding. J. Pet. Sci. Eng. 133, 431–439. doi:10.1016/j.petrol.2015.06.031
    https://doi.org/10.1016/j.petrol.2015.06.031 [Google Scholar]
  27. Cheng, P.
    , 2004. Chemical and photolytic degradation of polyacrylamides used in potable water treatment.
    [Google Scholar]
  28. Choi, B., Jeong, M.S., Lee, K.S.
    , 2014. Temperature-dependent viscosity model of HPAM polymer through high-temperature reservoirs. Polym. Degrad. Stab. 110, 225–231. doi:10.1016/j.polymdegradstab.2014.09.006
    https://doi.org/10.1016/j.polymdegradstab.2014.09.006 [Google Scholar]
  29. Costa, R., Pereira, J., Gomes, J., Goncalves, F., Hunkeler, D., Rasteiro, M.
    , 2014. The effects of acrylamide polyelectrolytes on aquatic organisms: Relating toxicity to chain architecture. Chemosphere112, 177–184.
    [Google Scholar]
  30. Cserhati, T., Forgacs, E., Oros, G.
    , 2002. Biological activity and environmental impact of anionic surfactants. Environ. Int. 28, 337–348. doi:10.1016/S0160‑4120(02)00032‑6
    https://doi.org/10.1016/S0160-4120(02)00032-6 [Google Scholar]
  31. Dai, X., Luo, F., Yi, J., He, Q., Dong, B.
    , 2014a. Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system. Bioresour. Technol. 153, 55–61. doi:10.1016/j.biortech.2013.11.007
    https://doi.org/10.1016/j.biortech.2013.11.007 [Google Scholar]
  32. , 2014b. Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system. Bioresour. Technol. 153, 55–61. doi:10.1016/j.biortech.2013.11.007
    https://doi.org/10.1016/j.biortech.2013.11.007 [Google Scholar]
  33. Daughton, C.G.
    , 1988. Quantitation of acrylamide (and polyacrylamide): critical review of methods for trace determination/formulation analysis and future-research recommendations. Final report. Daughton (Christian G.), Orinda, CA (USA).
    [Google Scholar]
  34. Davison, P., Mentzer, E.
    , 1982. Polymer Flooding in North Sea Reservoirs. Soc. Pet. Eng. J. 22, 353–362. doi:10.2118/9300‑PA
    https://doi.org/10.2118/9300-PA [Google Scholar]
  35. de Rosemond, S.J.C., Liber, K.
    , 2004. Wastewater treatment polymers identified as the toxic component of a diamond mine effluent. Environ. Toxicol. Chem. 23, 2234–2242. doi:10.1897/03‑609
    https://doi.org/10.1897/03-609 [Google Scholar]
  36. De Stefano, C., Gianguzza, A., Piazzese, D., Sammartano, S.
    , 2003. Quantitative parameters for the sequestering capacity of polyacrylates towards alkaline earth metal ions. Talanta61, 181–194. doi:10.1016/S0039‑9140(03)00249‑2
    https://doi.org/10.1016/S0039-9140(03)00249-2 [Google Scholar]
  37. Delamaide, E., Let, K.M.S., Bhoendie, K., Paidin, W.R., Jong-A-Pin, S.
    , 2016. Interpretation of the Performance Results of a Polymer Flood Pilot in the Tambaredjo Oil Field, Suriname. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. doi:10.2118/181499‑MS
    https://doi.org/10.2118/181499-MS [Google Scholar]
  38. Deng, S., Bai, R., Chen, J.P., Jiang, Z., Yu, G., Zhou, F., Chen, Z.
    , 2002. Produced water from polymer flooding process in crude oil extraction: characterization and treatment by a novel crossflow oil-water separator. Sep. Purif. Technol. 29, 207–216. doi:10.1016/S1383‑5866(02)00082‑5
    https://doi.org/10.1016/S1383-5866(02)00082-5 [Google Scholar]
  39. Deng, S., Yu, G., Jiang, Z., Zhang, R., Ting, Y.P.
    , 2005. Destabilization of oil droplets in produced water from ASP flooding. Colloids Surf. Physicochem. Eng. Asp. 252, 113–119. doi:10.1016/j.colsurfa.2004.09.033
    https://doi.org/10.1016/j.colsurfa.2004.09.033 [Google Scholar]
  40. DNV-GL
    , 2015a. Mulig Strengere Krav Til Olje I Produsert Vann - Handtering av produsert vann - erfaringer fra norsk sokkel (No. 2015–4277, Rev. 0). DNV-GL.
    [Google Scholar]
  41. , 2015b. Utredning av beste tilgjengelige teknikker for rensing av produsert vann som slippes ut fra petroleumsvirksomheten til havs (No. 2015-0992, Rev. 01). DNV-GL.
    [Google Scholar]
  42. Du, Y., Guan, L.
    , 2004. Field-scale Polymer Flooding: Lessons Learnt and Experiences Gained During Past 40 Years. Presented at the SPE International Petroleum Conference in Mexico, Society of Petroleum Engineers. doi:10.2118/91787‑MS
    https://doi.org/10.2118/91787-MS [Google Scholar]
  43. Dwyer, P., Delamaide, E.
    , 2015. Produced Water Treatment - Preparing for EOR Projects. Presented at the SPE Produced Water Handling & Management Symposium, Society of Petroleum Engineers. doi:10.2118/174537‑MS
    https://doi.org/10.2118/174537-MS [Google Scholar]
  44. Ebbesmeyer, C.C., Ingraham, W.J.Jr.,
    , 1994. Pacific toy spill fuels ocean current pathways research. Eos Trans. Am. Geophys. Union75, 425–430. doi:10.1029/94EO01056
    https://doi.org/10.1029/94EO01056 [Google Scholar]
  45. ECHA
    , 2012. Guidance for polymers and monomers [WWW Document]. URL http://echa.europa.eu/qa-display/-/qadisplay/5s1R/view/ids/65-66-67-68-69 (accessed 1.1.15).
    [Google Scholar]
  46. El-Mamouni, R., Frigon, J.-C., Hawari, J., Marroni, D., Guiot, S.R.
    , 2002. Combining photolysis and bioprocesses for mineralization of high molecular weight polyacrylamides. Biodegradation13, 221 – 227.
    [Google Scholar]
  47. Entry, J.A., Sojka, R.E., Hicks, B.J.
    , 2008. Carbon and nitrogen stable isotope ratios can estimate anionic polyacrylamide degradation in soil. Geoderma145, 8–16. doi:10.1016/j.geoderma.2007.12.015
    https://doi.org/10.1016/j.geoderma.2007.12.015 [Google Scholar]
  48. Eubeler, J.P.
    , 2010. Biodegradation of synthetic polymers in the aquatic environment.
    [Google Scholar]
  49. Farinato, R.S., Yen, W.S.
    , 1987a. Polymer degradation in porous media flow. J. Appl. Polym. Sci. 33, 2353–2368. doi: 10.1002/app.1987.070330708
    https://doi.org/10.1002/app.1987.070330708 [Google Scholar]
  50. , 1987b. Polymer degradation in porous media flow. J. Appl. Polym. Sci. 33, 2353–2368. doi: 10.1002/app.1987.070330708
    https://doi.org/10.1002/app.1987.070330708 [Google Scholar]
  51. Frost, T.K., Johnsen, S., Hjelsvold, M.
    , 2002. Environmental Risk Management of Discharges from E&P Activities in the North Sea. Society of Petroleum Engineers. doi: 10.2118/73854‑MS
    https://doi.org/10.2118/73854-MS [Google Scholar]
  52. Gaillard, N., Giovannetti, B., Favero, C., Caritey, J.-P., Dupuis, G., Zaitoun, A.
    , 2014. New Water Soluble Anionic NVP Acrylamide Terpolymers for Use in Harsh EOR Conditions. Presented at the SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. doi:10.2118/169108‑MS
    https://doi.org/10.2118/169108-MS [Google Scholar]
  53. Gaillard, N., Sanders, D.B., Favero, C.
    , 2010. Improved Oil Recovery Using Thermally And Chemically Protected Compositions Based On Co- And Ter-Polymers Containing Acrylamide. Presented at the SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. doi:10.2118/129756‑MS
    https://doi.org/10.2118/129756-MS [Google Scholar]
  54. Goodfellow, W.L., Ausley, L.W., Burton, D.T., Denton, D.L., Dorn, P.B., Grothe, D.R., Heber, M.A., Norberg-King, T.J., Rodgers, J.H.
    , 2000. Major ion toxicity in effluents: A review with permitting recommendations. Environ. Toxicol. Chem. 19, 175–182. doi:10.1002/etc.5620190121
    https://doi.org/10.1002/etc.5620190121 [Google Scholar]
  55. Gruber, N.
    , 2004. The Dynamics of the Marine Nitrogen Cycle and its Influence on Atmospheric CO2 Variations, in: Follows, M., Oguz, T. (Eds.), The Ocean Carbon Cycle and Climate, NATO Science Series. Springer Netherlands, pp. 97–148. doi:10.1007/978‑1‑4020‑2087‑2_4
    https://doi.org/10.1007/978-1-4020-2087-2_4 [Google Scholar]
  56. Grula, M.M., Grula, E.A.
    , 1983. Biodegradation of Materials Used in Enhanced Oil Recovery. Final Report, July 1, 1978–November 30, 1981 (No. DOE/BC/10304-17). Oklahoma State Univ., Stillwater (USA).
    [Google Scholar]
  57. Guezennec, A.G., Michel, C., Bru, K., Touze, S., Desroche, N., Mnif, I., Motelica-Heino, M.
    , 2014. Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review. Environ. Sci. Pollut. Res. 22, 6390–6406. doi:10.1007/s11356‑014‑3556‑6
    https://doi.org/10.1007/s11356-014-3556-6 [Google Scholar]
  58. Hall, W.S., Mirenda, R.J.
    , 1991. Acute Toxicity of Wastewater Treatment Polymers to Daphnia pulex and the Fathead Minnow (Pimephales promelas) and the Effects of Humic Acid on Polymer Toxicity. Res. J. Water Pollut. Control Fed. 63, 895–899. doi:10.2307/25044080
    https://doi.org/10.2307/25044080 [Google Scholar]
  59. HAN, C., LIU, Y., ZHAO, T., JING, G.
    , 2009. Reclamation of the Polymer-Flooding Produced Water. J Water Resour. Prot. 200911–57.
    [Google Scholar]
  60. Han, D.-K., Yang, C.-Z., Zhang, Z.-Q., Lou, Z.-H., Chang, Y.-I.
    , 1999. Recent development of enhanced oil recovery in China. J. Pet. Sci. Eng. 22, 181–188.
    [Google Scholar]
  61. Harford, A.J., Hogan, A.C., Jones, D.R., van Dam, R.A.
    , 2011. Ecotoxicological assessment of a polyelectrolyte flocculant. Water Res. 45, 6393–6402.
    [Google Scholar]
  62. He, Q., Young, T.-S., Willhite, G.P., Green, D.W.
    , 1990. Measurement of Molecular Weight Distribution of Polyacrylamides in Core Effluents. SPE Reserv. Eng. 5, 333–338. doi:10.2118/17343‑PA
    https://doi.org/10.2118/17343-PA [Google Scholar]
  63. Hicks, R., Satti, A.K., Leach, G.D.H., Naylor, I.L.
    , 1989. Characterization of toxicity involving haemorrhage and cardiovascular failure, caused by parenteral administration of a soluble polyacrylate in the rat. J. Appl. Toxicol. 9, 191–198. doi:10.1002/jat.2550090310
    https://doi.org/10.1002/jat.2550090310 [Google Scholar]
  64. Hocking, M.B., Klimchuk, K.A., Lowen, S.
    , 2000. Water-soluble acrylamide copolymers. VI. Preparation and characterization of poly[N,N-dimethylacrylamide-co-acrylamide] and control polyacrylamides. J. Polym. Sci. Part Polym. Chem. 38, 3128–3145. doi:10.1002/1099‑0518(20000901)38:17<3128::AID‑POLA130>3.0.CO;2‑K
    https://doi.org/10.1002/1099-0518(20000901)38:17<3128::AID-POLA130>3.0.CO;2-K [Google Scholar]
  65. Howarth, R.W.
    , 1988. Nutrient Limitation of Net Primary Production in Marine Ecosystems. Annu. Rev. Ecol. Syst. 19, 89–110.
    [Google Scholar]
  66. Howarth, R.W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J.A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P., Zhao-Liang, Z.
    , 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences, in: Howarth, R.W. (Ed.), Nitrogen Cycling in the North Atlantic Ocean and Its Watersheds. Springer Netherlands, pp. 75–139. doi:10.1007/978‑94‑009‑1776‑7_3
    https://doi.org/10.1007/978-94-009-1776-7_3 [Google Scholar]
  67. Howarth, R.W., Marino, R.
    , 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. 51, 364–376. doi:10.4319/lo.2006.51.1_part_2.0364
    https://doi.org/10.4319/lo.2006.51.1_part_2.0364 [Google Scholar]
  68. Hunkeler, D.
    , 1992. Synthesis and characterization of high molecular weight water-soluble polymers. Polym. Int. 27, 23–33. doi:10.1002/pi.4990270105
    https://doi.org/10.1002/pi.4990270105 [Google Scholar]
  69. Husdal, G., Østebrøt, A.
    , 2011. Polymer assisted water flooding – Environmental challenges. Add energy - Add Novatech AS.
    [Google Scholar]
  70. Johnsen, S., Roe, T.I., Durell, G., Reed, M.
    , others, 1998. Dilution and bioavailability of produced water compounds in the northern North Sea. A combined modeling and field study, in: SPE International Conference on Health, Safety, and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers.
    [Google Scholar]
  71. Jop, K., Allaway, J., Sampath, P., Guiney, P.
    , 1998. Ecotoxicological hazard assessment of two polymers of distinctively different molecular weights. Arch. Environ. Contam. Toxicol. 34, 145–151.
    [Google Scholar]
  72. Jung, J.C., Zhang, K., Chon, B.H., Choi, H.J.
    , 2013. Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery. J. Appl. Polym. Sci. 127, 4833–4839. doi:10.1002/app.38070
    https://doi.org/10.1002/app.38070 [Google Scholar]
  73. Kaczmarek, H., Kamińska, A., Światek, M., Rabek, J.F.
    , 1998. Photo-oxidative degradation of some water-soluble polymers in the presence of accelerating agents. Angew. Makromol. Chem. 261–262, 109–121. doi:10.1002/(SICI)1522‑9505(19981201)261‑262:1<109::AID‑APMC109>3.0.CO;2‑S
    https://doi.org/10.1002/(SICI)1522-9505(19981201)261-262:1<109::AID-APMC109>3.0.CO;2-S [Google Scholar]
  74. Kaiser, A., White, A., Lukman, A., I, I., Gernand, M., ShamsiJazeyi, H., Wylde, J., Alvarez, L.
    , 2015. The Influence of Chemical EOR on Produced Water Separation and Quality. Presented at the SPE Asia Pacific Enhanced Oil Recovery Conference, Society of Petroleum Engineers. doi:10.2118/174659‑MS
    https://doi.org/10.2118/174659-MS [Google Scholar]
  75. Kamal, M.S., Sultan, A.S., Al-Mubaiyedh, U.A., Hussein, I.A.
    , 2015. Review on Polymer Flooding: Rheology, Adsorption, Stability, and Field Applications of Various Polymer Systems. Polym. Rev. 55, 491–530.
    [Google Scholar]
  76. Kang, Z.-H., Li, H.-K., Xu, Y.-H., Chen, L.
    , 2013. Electrolytic degradation of polyacrylamide in aqueous solution using a three-dimensional electrode reactor. Desalination Water Treat. 51, 2687–2694. doi:10.1080/19443994.2012.749329
    https://doi.org/10.1080/19443994.2012.749329 [Google Scholar]
  77. Kaplan, E., Royce, B., Garrell, M.H., Riedel, E.F., Sathaye, J., Rotariu, G.J.
    , 1984. An environmental assessment of enhanced oil recovery. Miner. Environ. 6, 54–65. doi:10.1007/BF02072655
    https://doi.org/10.1007/BF02072655 [Google Scholar]
  78. Katchalsky, A.
    , 1964. Polyelectrolytes and Their Biological Interactions. Biophys. J. 4, 9–41.
    [Google Scholar]
  79. Kawai, F.
    , 2012. Microbial Degradation of Plastics and Water-Soluble Polymers, in: Singh, S.N. (Ed.), Microbial Degradation of Xenobiotics, Environmental Science and Engineering. Springer Berlin Heidelberg, pp. 411–438. doi:10.1007/978‑3‑642‑23789‑8_16
    https://doi.org/10.1007/978-3-642-23789-8_16 [Google Scholar]
  80. , 1993. Bacterial degradation of acrylic oligomers and polymers. Appl. Microbiol. Biotechnol. 39, 382–385. doi:10.1007/BF00192097
    https://doi.org/10.1007/BF00192097 [Google Scholar]
  81. Kawai, F., Hayashi, T.
    , 2005. Biodegradation of Polyacrylate, in: Biopolymers Online. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/3527600035.bpol9013
    https://doi.org/10.1002/3527600035.bpol9013 [Google Scholar]
  82. Kawai, F., Igarashi, K., Kasuya, F., Fukui, M.
    , 1994. Proposed mechanism for bacterial metabolism of polyacrylate. J. Environ. Polym. Degrad. 2, 59–65. doi:10.1007/BF02074774
    https://doi.org/10.1007/BF02074774 [Google Scholar]
  83. Kawatra, S.K., Bakshi, A.K., Rusesky, M.T.
    , 1996. The effect of slurry viscosity on hydrocyclone classification. Int. J. Miner. Process. 48, 39–50. doi:10.1016/S0301‑7516(96)00012‑9
    https://doi.org/10.1016/S0301-7516(96)00012-9 [Google Scholar]
  84. Kay-Shoemake, J.L., Watwood, M.E., Lentz, R.D., Sojka, R.E.
    , 1998. Polyacrylamide as an organic nitrogen source for soil microorganisms with potential effects on inorganic soil nitrogen in agricultural soil. Soil Biol. Biochem. 30, 1045–1052.
    [Google Scholar]
  85. KLIF
    , 2010. Klima- og forurensningsdirektoratets vurdering av maloppnaelse for nullutslippsarbeidet april 2010 (No. TA 2637 2010). Norwegian Environmental Agency.
    [Google Scholar]
  86. Koda, S., Mori, H., Matsumoto, K., Nomura, H.
    , 1994. Ultrasonic degradation of water-soluble polymers. Polymer35, 30–33. doi:10.1016/0032‑3861(94)90045‑0
    https://doi.org/10.1016/0032-3861(94)90045-0 [Google Scholar]
  87. Koda, S., Taguchi, K., Futamura, K.
    , 2011. Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers. Ultrason. Sonochem. 18, 276–281. doi:10.1016/j.ultsonch.2010.06.007
    https://doi.org/10.1016/j.ultsonch.2010.06.007 [Google Scholar]
  88. Kong, L., Liu, S.
    , 2013. Direct determination of polyacrylamide in water samples by its enhancement effect on the resonance Rayleigh scattering of some basic diphenyl naphthylmethane dyes. Int. J. Environ. Anal. Chem. 93, 23–34. doi:10.1080/03067319.2011.603077
    https://doi.org/10.1080/03067319.2011.603077 [Google Scholar]
  89. Lake, L.W., Walsh, M.P.
    , 2008. Enhanced oil recovery (EOR) field data literature search. Department of Petroleum and Geosystems Engineering, University of Texas at Austin.
    [Google Scholar]
  90. Larson, R.J., Bookland, E.A., Williams, R.T., Yocom, K.M., Saucy, D.A., Freeman, M.B., Swift, G.
    , 1997. Biodegradation of acrylic acid polymers and oligomers by mixed microbial communities in activated sludge. J. Environ. Polym. Degrad. 5, 41–48. doi:10.1007/BF02763567
    https://doi.org/10.1007/BF02763567 [Google Scholar]
  91. Lee, S., Kim, D.H., Huh, C., Pope, G.A.
    , 2009. Development of a Comprehensive Rheological Property Database for EOR Polymers. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. doi: 10.2118/124798‑MS
    https://doi.org/10.2118/124798-MS [Google Scholar]
  92. Leonhardt, B., Ernst, B., Reimann, S., Steigerwald, A., Lehr, F.
    , 2014. Field Testing The Polysaccharide Schizophyllan: Results of The First Year. Presented at the SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. doi: 10.2118/169032‑MS
    https://doi.org/10.2118/169032-MS [Google Scholar]
  93. Lépine, L., Gilbert, R.
    , 2002. Thermal degradation of polyacrylic acid in dilute aqueous solution. Polym. Degrad. Stab. 75, 337–345. doi:10.1016/S0141‑3910(01)00236‑1
    https://doi.org/10.1016/S0141-3910(01)00236-1 [Google Scholar]
  94. Leung, W.M., Axelson, D.E., Van Dyke, J.D.
    , 1987. Thermal degradation of polyacrylamide and poly(acrylamide-co-acrylate). J. Polym. Sci. Part Polym. Chem. 25, 1825–1846. doi: 10.1002/pola.1987.080250711
    https://doi.org/10.1002/pola.1987.080250711 [Google Scholar]
  95. Levitt, D., Pope, G.A.
    , 2008. Selection and Screening of Polymers for Enhanced-Oil Recovery. Society of Petroleum Engineers. doi: 10.2118/113845‑MS
    https://doi.org/10.2118/113845-MS [Google Scholar]
  96. Levitt, D.B., Slaughter, W., Pope, G., Jouenne, S.
    , 2011. The Effect of Redox Potential and Metal Solubility on Oxidative Polymer Degradation. SPE Reserv. Eval. Eng. 14, 287–298. doi:10.2118/129890‑PA
    https://doi.org/10.2118/129890-PA [Google Scholar]
  97. Li, C.-Y., Zhang, D., Li, X.-X., Mbadinga, S.M., Yang, S.-Z., Liu, J.-F., Gu, J.-D., Mu, B.-Z.
    , 2016. The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield. J. Hazard. Mater. 304, 388–399. doi:10.1016/j.jhazmat.2015.10.067
    https://doi.org/10.1016/j.jhazmat.2015.10.067 [Google Scholar]
  98. Liber, K., Weber, L., Lévesque, C.
    , 2005. Sublethal toxicity of two wastewater treatment polymers to lake trout fry (Salvelinus namaycush). Chemosphere61, 1123–1133. doi:10.1016/j.chemosphere.2005.03.004
    https://doi.org/10.1016/j.chemosphere.2005.03.004 [Google Scholar]
  99. Liu, H., Tang, S., Li, X., Zeng, L.
    , 2006. Techniques of Re-Injecting 100% of Produced Water in Daqing Oilfield. Presented at the International Oil & Gas Conference and Exhibition in China, Society of Petroleum Engineers. doi:10.2118/100986‑MS
    https://doi.org/10.2118/100986-MS [Google Scholar]
  100. Liu, J., Ren, J., Xu, R., Yu, B., Wang, J.
    , 2016. Biodegradation of partially hydrolyzed polyacrylamide by immobilized bacteria isolated from HPAM-containing wastewater. Environ. Prog. Sustain. Energy35, 1344–1352. doi:10.1002/ep.12354
    https://doi.org/10.1002/ep.12354 [Google Scholar]
  101. Liu, Y., Wang, Z., Li, X., Le, X., Wang, X.
    , 2014. ASP Flooding Produced Water Management: Evaluation, Disposal And Reuse. Presented at the SPE Middle East Health, Safety, Environment & Sustainable Development Conference and Exhibition, Society of Petroleum Engineers. doi:10.2118/170396‑MS
    https://doi.org/10.2118/170396-MS [Google Scholar]
  102. Locke, A.
    , n.d. Tabulated observations of the pH tolerance of marine and estuarine biota (No. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2857). Fisheries and Oceans Canada Gulf Fisheries Centre P.O. Box 5030, Moncton, NB, E1C 9B6 2008 Canadian Manuscript.
    [Google Scholar]
  103. Lu, J.H., Wu, L., Letey, J.
    , 2002. Effects of Soil and Water Properties on Anionic Polyacrylamide Sorption. Soil Sci. Soc. Am. J. 66, 578–584. doi:10.2136/sssaj2002.5780
    https://doi.org/10.2136/sssaj2002.5780 [Google Scholar]
  104. Lu, M., Wu, X., Wei, X.
    , 2012. Chemical degradation of polyacrylamide by advanced oxidation processes. Environ. Technol. 33, 1021–1028. doi:10.1080/09593330.2011.606279
    https://doi.org/10.1080/09593330.2011.606279 [Google Scholar]
  105. Maerker, J.M.
    , 1976. Mechanical Degradation of Partially Hydrolyzed Polyacrylamide Solutions in Unconsolidated Porous Media. Soc. Pet. Eng. J. 16, 172–174. doi:10.2118/5672‑PA
    https://doi.org/10.2118/5672-PA [Google Scholar]
  106. Mai, C., Schormann, W., Majcherczyk, A., Huttermann, A.
    , 2004. Degradation of acrylic copolymers by white-rot fungi. Appl. Microbiol. Biotechnol. 65, 479–487. doi:10.1007/s00253‑004‑1668‑5
    https://doi.org/10.1007/s00253-004-1668-5 [Google Scholar]
  107. Manichand, R.N., Let, M.S., Priscilla, K., Seright, R.S., Quillien, B., Gil, L.
    , 2013. Effective Propagation of HPAM Solutions Through the Tambaredjo Field During a Polymer Flood. Presented at the SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers. doi:10.2118/164121‑MS
    https://doi.org/10.2118/164121-MS [Google Scholar]
  108. Manichand, R.N., Seright, R.S.
    , 2014. Field vs Laboratory Polymer Retention Values for a Polymer Flood in the Tambaredjo Field. Presented at the SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. doi:10.2118/169027‑MS
    https://doi.org/10.2118/169027-MS [Google Scholar]
  109. Mansour, A.M., Al-Maamari, R.S., Al-Hashmi, A.S., Zaitoun, A., Al-Sharji, H.
    , 2014. In-situ rheology and mechanical degradation of EOR polyacrylamide solutions under moderate shear rates. J. Pet. Sci. Eng. 115, 57–65.
    [Google Scholar]
  110. Martinez, J.S., Keller, T.C.S., Schlenoff, J.B.
    , 2011. Cytotoxicity of Free versus Multilayered Polyelectrolytes. Biomacromolecules12, 4063–4070. doi:10.1021/bm201142x
    https://doi.org/10.1021/bm201142x [Google Scholar]
  111. Matejka, Z., Zitkova, Z.
    , 1997. A Collection of Invited Papers in Honour of Dr. Robert KuninThe sorption of heavy-metal cations from EDTA complexes on acrylamide resins having oligo(ethyleneamine) moieties. React. Funct. Polym. 35, 81–88. doi:10.1016/S1381‑5148(97)00052‑7
    https://doi.org/10.1016/S1381-5148(97)00052-7 [Google Scholar]
  112. Mehta, N., Kapadia, G., Panneer Selvam, V.
    , 2016. Challenges in Full Field Polymer Injection Mangala in Field. Presented at the SPE EOR Conference at Oil and Gas West Asia, Society of Petroleum Engineers. doi:10.2118/179807‑MS
    https://doi.org/10.2118/179807-MS [Google Scholar]
  113. Mezger, T.G.
    , 2006. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers. Vincentz Network GmbH & Co KG.
    [Google Scholar]
  114. Miljødirektoratet
    , 2008. Forskrift om registrering, vurdering, godkjenning og begrensning av kjemikalier (REACH-forskriften).
    [Google Scholar]
  115. , 1981. Norwegian “Pollution Control Act.”
    [Google Scholar]
  116. MNIF, I., HUREL, C., GUEZENNEC, A.G., MARMIER, N.
    , 2014. Interaction of polyacrylamide floculants and acrylamide with clays, soil and sediments [WWW Document]. URL http://goldschmidt.info/2014/uploads/abstracts/finalPDFs/1712.pdf (accessed 4.4.16).
    [Google Scholar]
  117. Morel, D.C., Jouenne, S., Vert, M., Nahas, E.
    , 2008. Polymer Injection in Deep Offshore Field: The Dalia Angola Case. Society of Petroleum Engineers. doi: 10.2118/116672‑MS
    https://doi.org/10.2118/116672-MS [Google Scholar]
  118. Mungan, N., Smith, F., Thompson, J.
    , 1966. Some aspects of polymer floods. J. Pet. Technol. 18, 1, 143–1, 150.
    [Google Scholar]
  119. Najamudin, K.E., Halim, N.H., Salleh, I.K., Chai Ching Hsia, I., Yusof, M.Y., Sedaralit, M.F.
    , 2014. Chemical EOR Produced Water Management at Malay Basin Field. Presented at the Offshore Technology Conference-Asia, Offshore Technology Conference. doi:10.4043/24804‑MS
    https://doi.org/10.4043/24804-MS [Google Scholar]
  120. Nakamiya, K., Kinoshita, S.
    , 1995. Isolation of polyacrylamide-degrading bacteria. J. Ferment. Bioeng. 80, 418–420.
    [Google Scholar]
  121. NOG
    , 2016. Miljørapport 2015. Norsk Olje og Gass.
    [Google Scholar]
  122. , 2015. Miljørapport 2014 - olje- og gassindustriens miljøarbeid fakta og utviklingstrekk - Norsk olje og gass. Norsk Olje og gass.
    [Google Scholar]
  123. NPD
    , 2016. Faktasider - Norwegian petroleum directorate [WWW Document]. URL http: //factpages.npd .no/factpages/default.aspx?culture=nb-no&nav1=field&nav2=PageView|All&nav3=26376286 (accessed 4.6.16).
    [Google Scholar]
  124. , 2014. Arsrapport 2014: Ressurser og produksjon - Norwegian petroleum directorate. Norwegian petroleum directorate.
    [Google Scholar]
  125. NPD, Høgnesen, E.Jens, Thorsen, S., Helvig, O.S., Krakstad, O.S., Dalva, A., Holter, K.E., Opsahl, E.
    , 2016. Norwegian petroleum directorate, meeting with environmental risk group.
    [Google Scholar]
  126. OECD
    , 1992. Test No. 306: Biodegradability in Seawater. Organisation for Economic Co-operation and Development, Paris.
    [Google Scholar]
  127. Ogezi, O., Strobel, J., Egbuniwe, D., Leonhardt, B.
    , 2014. Operational Aspects of a Biopolymer Flood in a Mature Oilfield. Presented at the SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. doi:10.2118/169158‑MS
    https://doi.org/10.2118/169158-MS [Google Scholar]
  128. O’Leary, Leary, W.B., Boivin, J.W., Dasinger, B.L., Beck, D., Goldman, I.M., Wernau, W.C.
    , 1987. Biocide Evaluation Against Sessile Xanthan Polymer-Degrading Bacteria. SPE Reserv. Eng. 2, 647–652. doi:10.2118/13588‑PA
    https://doi.org/10.2118/13588-PA [Google Scholar]
  129. OSPAR
    2013. OSPAR List of Substances Used and Discharged Offshore which Are Considered to Pose Little or No Risk to the Environment (PLONOR); OSPAR Agreement 2012-06 (Replacing Agreement 2004–10) Revised February 2013 to correct footnote cross-references.
    [Google Scholar]
  130. , 1992. Convention for the Protection of the Marine Environment of the North-East Atlantic.
    [Google Scholar]
  131. Pandey, A., Suresh Kumar, M., Jha, M.K., Tandon, R., Punnapully, B., Kalugin, M.A., Khare, A., Beliveau, D.
    , 2012a. Chemical EOR Pilot in Mangala Field: Results of initial Polymer Flood Phase. Society of Petroleum Engineers. doi:10.2118/154159‑MS
    https://doi.org/10.2118/154159-MS [Google Scholar]
  132. , 2012b. Chemical EOR Pilot in Mangala Field: Results of initial Polymer Flood Phase. Presented at the SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. doi: 10.2118/154159‑MS
    https://doi.org/10.2118/154159-MS [Google Scholar]
  133. Pasch, H., Schrepp, W.
    , 2013. MALDI-TOF Mass Spectrometry of Synthetic Polymers. Springer Science & Business Media.
    [Google Scholar]
  134. Petrowiki
    , 2016. Field performance of polymer waterflooding - PETROWIKI [WWW Document]. URL http://petrowiki.org/Field_performance_of_polymer_waterflooding (accessed 4.6.16).
    [Google Scholar]
  135. Podzimek, S.
    , 2011. Wiley: Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles - Stepan Podzimek [WWW Document]. URL http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470386177.html (accessed 2.9.17).
  136. PTIL
    , 2001. Norwegian “Activities regulations” - Petroleumstilsynet.
    [Google Scholar]
  137. Qiu, J., Li, Z.-C., Gao, Q.-Y., Yao, G.-Q., Yang, G.-X., Zhang, J.-X., Li, F.-M.
    , 1996. Vinyl monomers bearing chromophore moieties and their polymers. III. Synthesis and photochemical behavior of acrylic monomers having phenothiazine moieties and their polymers. J. Polym. Sci. Part Polym. Chem. 34, 3015–3023. doi:10.1002/(SICI)1099‑0518(199610)34:14<3015::AID‑POLA19>3.0.CO;2‑M
    https://doi.org/10.1002/(SICI)1099-0518(199610)34:14<3015::AID-POLA19>3.0.CO;2-M [Google Scholar]
  138. Rambeau, O., Alves, M.-H., Loriau, M., Molinier, V., Passade-Boupat, N., Lebas, G.
    , 2015. Chemical Solutions to Handle Viscosified Back Produced Water in Case of Polymer Flooding. Presented at the Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Engineers. doi:10.2118/177501‑MS
    https://doi.org/10.2118/177501-MS [Google Scholar]
  139. Ramsden, D.K., McKay, K.
    , 1986. Degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part I—Fenton’s reagent. Polym. Degrad. Stab. 14, 217–229. doi:10.1016/0141‑3910(86)90045‑5
    https://doi.org/10.1016/0141-3910(86)90045-5 [Google Scholar]
  140. RANDALL, J.C.
    (Ed.), 1977. 1 - Polymer Structure and Carbon–13 NMR, in: Polymer Sequence Determination. Academic Press, pp. 1–27. doi:10.1016/B978‑0‑12‑578050‑6.50005‑X
    https://doi.org/10.1016/B978-0-12-578050-6.50005-X [Google Scholar]
  141. Reed, M., Johnsen, S.
    (Eds.), 1996. Produced Water 2. Springer US, Boston, MA.
    [Google Scholar]
  142. Regjeringen
    , 1997. St.meld. nr. 58 (1996–97) Miljøvernpolitikk for en bærekraftig utvikling - Dugnad for framtida.
    [Google Scholar]
  143. Rittmann, B.E., Sutfin, J.A., Henry, B.
    , 1991. Biodegradation and sorption properties of polydisperse acrylate polymers. Biodegradation2, 181–191. doi:10.1007/BF00124492
    https://doi.org/10.1007/BF00124492 [Google Scholar]
  144. Rivas, B.L., Pereira, E.D., Moreno-Villoslada, I.
    , 2003. Water-soluble polymer-metal ion interactions. Prog. Polym. Sci. 28, 173–208. doi:10.1016/S0079‑6700(02)00028‑X
    https://doi.org/10.1016/S0079-6700(02)00028-X [Google Scholar]
  145. Robertson, E.J., Richmond, G.L.
    , 2014. Molecular Insights in the Structure and Layered Assembly of Polyelectrolytes at the Oil/Water Interface. J. Phys. Chem. C118, 28331–28343. doi:10.1021/jp5068022
    https://doi.org/10.1021/jp5068022 [Google Scholar]
  146. Rogošić, M., Mencer, H.J., Gomzi, Z.
    , 1996. Polydispersity index and molecular weight distributions of polymers. Eur. Polym. J. 32, 1337–1344. doi:10.1016/S0014‑3057(96)00091‑2
    https://doi.org/10.1016/S0014-3057(96)00091-2 [Google Scholar]
  147. Rosenberg, R., Elmgren, R., Fleischer, S., Jonsson, P., Persson, G., Dahlin, H.
    , 1990. Marine Eutrophication Case Studies in Sweden. Ambio19, 102–108.
    [Google Scholar]
  148. Rosenberg, R., Loo, L.-O.
    , 1988. Marine eutrophication induced oxygen deficiency: Effects on soft bottom Fauna, Western Sweden. Ophelia29, 213–225. doi:10.1080/00785326.1988.10430830
    https://doi.org/10.1080/00785326.1988.10430830 [Google Scholar]
  149. Royce, B., Kahn, A.
    , 1983. EOR CHEMICALS IN FRESH WATER AQUIFERS (No. DO E/BC/99996-2 (DE8401 1235)). U.S. DEPARTMENT OF ENERGY.
    [Google Scholar]
  150. Rushing, T.S., Hester, R.D.
    , 2004. Semi-empirical model for polyelectrolyte intrinsic viscosity as a function of solution ionic strength and polymer molecular weight. Polymer45, 6587–6594. doi:10.1016/j.polymer.2004.07.029
    https://doi.org/10.1016/j.polymer.2004.07.029 [Google Scholar]
  151. Sabhapondit, A., Borthakur, A., Haque, I.
    , 2003. Water Soluble Acrylamidomethyl Propane Sulfonate (AMPS) Copolymer as an Enhanced Oil Recovery Chemical. Energy Fuels17, 683–688. doi:10.1021/ef010253t
    https://doi.org/10.1021/ef010253t [Google Scholar]
  152. Sang, G., Pi, Y., Bao, M., Li, Y., Lu, J.
    , 2015a. Biodegradation for hydrolyzed polyacrylamide in the anaerobic baffled reactor combined aeration tank. Ecol. Eng. 84, 121–127. doi:10.1016/j.ecoleng.2015.07.028
    https://doi.org/10.1016/j.ecoleng.2015.07.028 [Google Scholar]
  153. , 2015b. Biodegradation for hydrolyzed polyacrylamide in the anaerobic baffled reactor combined aeration tank. Ecol. Eng. 84, 121–127. doi: 10.1016/j.ecoleng.2015.07.028
    https://doi.org/10.1016/j.ecoleng.2015.07.028 [Google Scholar]
  154. Sathesh Prabu, C., Thatheyus, A.J.
    , 2007. Biodegradation of acrylamide employing free and immobilized cells of Pseudomonas aeruginosa. Int. Biodeterior. Biodegrad. 60, 69–73. doi:10.1016/j.ibiod.2006.11.007
    https://doi.org/10.1016/j.ibiod.2006.11.007 [Google Scholar]
  155. Seright, R., Skjevrak, I.
    , 2015. Effect of Dissolved Iron and Oxygen on Stability of Hydrolyzed Polyacrylamide Polymers. SPE J. 20, 433–441. doi:10.2118/169030‑PA
    https://doi.org/10.2118/169030-PA [Google Scholar]
  156. Seright, R.S.
    , 1983. The Effects of Mechanical Degradation and Viscoelastic Behavior on Injectivity of Polyacrylamide Solutions. Soc. Pet. Eng. J. 23, 475–485. doi:10.2118/9297‑PA
    https://doi.org/10.2118/9297-PA [Google Scholar]
  157. Sheng, J.
    , 2013. Enhanced oil recovery : field case studies. Gulf Professional Publishing, Waltham, Mass.
    [Google Scholar]
  158. Sheng, J.J., Leonhardt, B., Azri, N.
    , 2015. Status of Polymer-Flooding Technology. J. Can. Pet. Technol. 54, 116–126. doi:10.2118/174541‑PA
    https://doi.org/10.2118/174541-PA [Google Scholar]
  159. Shukla, N.B., Daraboina, N., Madras, G.
    , 2009. Oxidative and photooxidative degradation of poly(acrylic acid). Polym. Degrad. Stab. 94, 1238–1244. doi:10.1016/j.polymdegradstab.2009.04.020
    https://doi.org/10.1016/j.polymdegradstab.2009.04.020 [Google Scholar]
  160. Silvestro, E., Crocker, M.
    , 1980. Toxicity of Chemical Compounds Used for Enhanced Oil Recovery. Final Report (No. DOE/BC/10014–5). Energy Resources Co., Inc., Cambridge, MA (USA); Department of Energy, Bartlesville, OK (USA). Bartlesville Energy Technology Center.
    [Google Scholar]
  161. Smith, E.A., Oehme, F.W.
    , 2011. Acrylamide and Polyacrylamide: A Review of Production, Use, Environmental Fate and Neurotoxicity. Rev. Environ. Health9, 215–228. doi:10.1515/REVEH.1991.9.4.215
    https://doi.org/10.1515/REVEH.1991.9.4.215 [Google Scholar]
  162. Smith, E.A., Prues, S.L., Oehme, F.W.
    , 1997. Environmental degradation of polyacrylamides. Ecotoxicol. Environ. Saf. 37, 76–91.
    [Google Scholar]
  163. Somasundaran, P., Zhang, L.
    , 2006. Adsorption of surfactants on minerals for wettability control in improved oil recovery processes. J. Pet. Sci. Eng., Reservoir Wettability 8th International Symposium on Reservoir Wettability52, 198–212. doi:10.1016/j.petrol.2006.03.022
    https://doi.org/10.1016/j.petrol.2006.03.022 [Google Scholar]
  164. Soponkanaporn, T., Gehr, R.
    , 1988. The Degradation of Polyelectrolytes in the Environment: Insights Provided by Size Exclusion Chromatography Measurements [WWW Document]. URL http://www.iwaponline.com/wst/02108/wst021080857.htm (accessed 10.29.15).
  165. Sorbie, K.S.
    , 1991. Structure ofthe main polymers used in improved oil recovery (IOR), in: Polymer-Improved Oil Recovery. Springer Netherlands, pp. 6–36. doi:10.1007/978‑94‑011‑3044‑8_2
    https://doi.org/10.1007/978-94-011-3044-8_2 [Google Scholar]
  166. Sorbie, K.S., Huang, Y.
    , 1991. Rheological and transport effects in the flow of low-concentration xanthan solution through porous media. J. Colloid Interface Sci. 145, 74–89. doi:10.1016/0021‑9797(91)90100‑M
    https://doi.org/10.1016/0021-9797(91)90100-M [Google Scholar]
  167. Sorrell, S., Speirs, J., Bentley, R., Brandt, A., Miller, R.
    , 2010. Global oil depletion: A review of the evidence. Energy Policy, Special Section on Carbon Emissions and Carbon Management in Cities with Regular Papers38, 5290–5295. doi:10.1016/j.enpol.2010.04.046
    https://doi.org/10.1016/j.enpol.2010.04.046 [Google Scholar]
  168. Spildo, K., Tweddale, A., Søndenå, E., Guo, Y., Aas, N., Karlsen, T., Verlo, S.B., Olsen, M.
    , 2012. Assessment of Environmental Impact from EOR Chemicals for the Norwegian Continental Shelf.
    [Google Scholar]
  169. Standnes, D.C., Skjevrak, I.
    , 2014. Literature review of implemented polymer field projects. J. Pet. Sci. Eng. 122, 761–775. doi:10.1016/j.petrol.2014.08.024
    https://doi.org/10.1016/j.petrol.2014.08.024 [Google Scholar]
  170. Statoil
    , 2010. Back-production of chemicals. Estimates from real-case studies in Statoil. Statoil.
    [Google Scholar]
  171. Striegel, A., Yau, W.W., Kirkland, J.J., Bly, D.D.
    , 2009. Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography, 2nd ed. ed. Hoboken: Wiley, Hoboken.
    [Google Scholar]
  172. Suzuki, J., Harada, H., Suzuki, S.
    , 1979. Ozone treatment of water-soluble polymers. V. Ultraviolet irradiation effects on the ozonization of polyacrylamide. J. Appl. Polym. Sci. 24, 999–1006. doi:10.1002/app.1979.070240413
    https://doi.org/10.1002/app.1979.070240413 [Google Scholar]
  173. Sverdrup, L.E., Källqvist, T., Kelley, A.E., Fürst, C.S., Hagen, S.B.
    , 2001. Comparative toxicity of acrylic acid to marine and freshwater microalgae and the significance for environmental effects assessments. Chemosphere45, 653–658.
    [Google Scholar]
  174. TangHong-Ming
    , 2011. Abstract - The Damage of Polymer-Flooding Wastewater Injection into the Reservoir of LD10-1 Oil Fields. Oilfield Chem.
    [Google Scholar]
  175. Taylor, K.C., Nasr-El-Din, H.A.
    , 1998. Water-soluble hydrophobically associating polymers for improved oil recovery: A literature review. J. Pet. Sci. Eng. 19, 265–280. doi:10.1016/S0920‑4105(97)00048‑X
    https://doi.org/10.1016/S0920-4105(97)00048-X [Google Scholar]
  176. TEKNA
    , 2016. Presentation collection - Produced water management conference. TEKNA, Stavanger - Norway.
    [Google Scholar]
  177. Torabi, F., Luo, W., Xu, S.
    , 2013a. Chemical Degradation of HPAM by Oxidization in Produced Water: Experimental Study. Society of Petroleum Engineers. doi:10.2118/163751‑MS
    https://doi.org/10.2118/163751-MS [Google Scholar]
  178. , 2013b. Chemical Degradation of HPAM by Oxidization in Produced Water: Experimental Study. Presented at the SPE Americas E&P Health, Safety, Security and Environmental Conference, Society of Petroleum Engineers. doi:10.2118/163751‑MS
    https://doi.org/10.2118/163751-MS [Google Scholar]
  179. Varanasi, U.
    , 1989. Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC Press.
    [Google Scholar]
  180. Vers, L.M.V.
    , 1999. Determination of Acrylamide Monomer in Polyacrylamide Degradation Studies by High-Performance Liquid Chromatography. J. Chromatogr. Sci. 37, 486–494. doi:10.1093/chromsci/37.12.486
    https://doi.org/10.1093/chromsci/37.12.486 [Google Scholar]
  181. Vignes, B., Aadnoy, B.S.
    , 2008. Well-Integrity Issues Offshore Norway. Society of Petroleum Engineers. doi:10.2118/112535‑MS
    https://doi.org/10.2118/112535-MS [Google Scholar]
  182. Wallace, A., Wallace, G.A.
    , 2003. Fate of the residual monomer, acrylamide, in water-soluble polyacrylamide, and potential of both for toxicity when applied to soil. 195–210.
    [Google Scholar]
  183. Wang, B., Chen, Y., Liu, S., Wu, H., Song, H.
    , 2006. Photocatalytical visbreaking of wastewater produced from polymer flooding in oilfields. Colloids Surf. Physicochem. Eng. Asp. 287, 170–174. doi:10.1016/j.colsurfa.2006.03.051
    https://doi.org/10.1016/j.colsurfa.2006.03.051 [Google Scholar]
  184. Wang, D., Cheng, J., Wu, J., Wang, G.
    , 2002. Experiences Learned after Production of more than 300 million Barrels of Oil by Polymer Flooding in Daqing Oil Field. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. doi:10.2118/77693‑MS
    https://doi.org/10.2118/77693-MS [Google Scholar]
  185. Wang, L.K., Wang, M.H., Kao, J.-F.
    , 1978. Application and determination of organic polymers. Water. Air. Soil Pollut. 9, 337–348.
    [Google Scholar]
  186. Wang, Z., Lin, B., Sha, G., Zhang, Y., Yu, J., Li, L.
    , 2011. A Combination of Biodegradation and Microfiltration for Removal of Oil and Suspended Solids From Polymer-Containing Produced Water. Presented at the SPE Americas E&P Health, Safety, Security, and Environmental Conference, Society of Petroleum Engineers. doi:10.2118/140916‑MS
    https://doi.org/10.2118/140916-MS [Google Scholar]
  187. Weissenfels, W.D., Klewer, H.-J., Langhoff, J.
    , 1992. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl. Microbiol. Biotechnol. 36, 689–696. doi:10.1007/BF00183251
    https://doi.org/10.1007/BF00183251 [Google Scholar]
  188. Wen, Q., Chen, Z., Zhao, Y., Zhang, H., Feng, Y.
    , 2010. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil. J. Hazard. Mater. 175, 955–959.
    [Google Scholar]
  189. Weston, D.P., Lentz, R.D., Cahn, M.D., Ogle, R.S., Rothert, A.K., Lydy, M.J.
    , 2009. Toxicity of Anionic Polyacrylamide Formulations when Used for Erosion Control in Agriculture. J. Environ. Qual. 38, 238–247. doi: 10.2134/jeq2008.0109
    https://doi.org/10.2134/jeq2008.0109 [Google Scholar]
  190. Wong, S.W.Y., Leung, K.M.Y., Djurisic, A.B.
    , 2013. A Comprehensive Review on the Aquatic Toxicity of Engineered Nanomaterials. Rev. Nanosci. Nanotechnol. 2, 79–105. doi:10.1166/rnn.2013.1025
    https://doi.org/10.1166/rnn.2013.1025 [Google Scholar]
  191. Wyatt, P.J.
    , 1993. Light scattering and the absolute characterization of macromolecules. Anal. Chim. Acta272, 1–40. doi:10.1016/0003‑2670(93)80373‑S
    https://doi.org/10.1016/0003-2670(93)80373-S [Google Scholar]
  192. Yang, L., Zhihua, W., Xianglong, Z., Hongqi, Z., Xinpeng, L.
    , 2013. An Environmentally-Friendly Method for Disposal of the ASP Flooding Produced Water. Presented at the SPE Arctic and Extreme Environments Technical Conference and Exhibition, Society of Petroleum Engineers. doi:10.2118/166965‑MS
    https://doi.org/10.2118/166965-MS [Google Scholar]
  193. Yi, Z., Zhu, Y., Ma, D., Han, D., Han, D., Wang, S.
    , 2010. Studies on the Electro-Catalytic Degradation of EOR Wastewater by Ce-Ti/ TiO2 Electrode. Presented at the International Oil and Gas Conference and Exhibition in China, Society of Petroleum Engineers. doi:10.2118/131948‑MS
    https://doi.org/10.2118/131948-MS [Google Scholar]
  194. Yongrui, P., Zheng, Z., Bao, M., Li, Y., Zhou, Y., Sang, G.
    , 2015. Treatment of partially hydrolyzed polyacrylamide wastewater by combined Fenton oxidation and anaerobic biological processes. Chem. Eng. J. 273, 1–6. doi:10.1016/j.cej.2015.01.034
    https://doi.org/10.1016/j.cej.2015.01.034 [Google Scholar]
  195. Zhang, G., Seright, R.
    , 2014. Effect of Concentration on HPAM Retention in Porous Media. SPE J. 19, 373–380. doi:10.2118/166265‑PA
    https://doi.org/10.2118/166265-PA [Google Scholar]
  196. Zhang, Y., Gao, B., Lu, L., Yue, Q., Wang, Q., Jia, Y.
    , 2010. Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification-dynamic membrane bioreactor-coagulation process. J. Pet. Sci. Eng. 74, 14–19. doi:10.1016/j.petrol.2010.08.001
    https://doi.org/10.1016/j.petrol.2010.08.001 [Google Scholar]
  197. Zhao, X., Liu, L., Wang, Y., Dai, H., Wang, D., Cai, H.
    , 2008. Influences of partially hydrolyzed polyacrylamide (HPAM) residue on the flocculation behavior of oily wastewater produced from polymer flooding. Sep. Purif. Technol. 62, 199–204. doi:10.1016/j.seppur.2008.01.019
    https://doi.org/10.1016/j.seppur.2008.01.019 [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201700478
Loading
/content/papers/10.3997/2214-4609.201700478
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error