1887

Abstract

Summary

For macro-velocity-model building, the ray-based formulation of classic stereotomography is replaced by eikonal solvers with simultaneous introduction of adjoint-state method for an efficient matrix free optimization scheme. In this approach, named adjoint stereotomography, forward modelling is performed from sources and receivers, making the approach independent of the data complexity. In this work, the adjoint stereotomography is extended to anisotropic media where vertical velocity, Thomsen anisotropic parameters and scattering-point positions are inverted jointly. In this multi-parameter inversion, the matrix-free framework of optimization reduces drastically the computational burden of the workflow. The inversion is based on a weighted leastsquares misfit function as we mix different data. Explicit expressions of gradients for the different parameters are provided and are illustrated through sensitivity kernels. A very simple example of a circular anomaly will show how are recovered parameters when using a quasi-Newton lBFGS method of optimization, giving us the confidence that more realistic examples could be investigated in the future.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201700605
2017-06-12
2020-07-12
Loading full text...

Full text loading...

References

  1. Alkhalifah, T.
    [2003] An acoustic wave equation for orthorhombic anisotropy. Geophysics, 68, 1169–1172.
    [Google Scholar]
  2. Billette, F. and Lambaré, G.
    [1998] Velocity macro-model estimation from seismic reflection data by stereotomography. Geophysical Journal International, 135(2), 671–680.
    [Google Scholar]
  3. Hicks, G.J.
    [2002] Arbitrary source and receiver positioning in finite-difference schemes using Kaiser windowed sinc functions. Geophysics, 67, 156–166.
    [Google Scholar]
  4. Nag, S., Alerini, M. and Ursin, B.
    [2010] PP/PS anisotropic stereotomography. Geophysical Journal International, 181(1), 427–452.
    [Google Scholar]
  5. Plessix, R.E.
    [2006] A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 167(2), 495–503.
    [Google Scholar]
  6. Taillandier, C., Noble, M., Chauris, H. and Calandra, H.
    [2009] First-arrival travel time tomography based on the adjoint state method. Geophysics, 74(6), WCB1–WCB10.
    [Google Scholar]
  7. Tavakoli, F.B., Ribodetti, A., Operto, S. and Virieux, J.
    [2016] Adjoint stereotomography. In: SEG Technical Program Expanded Abstracts 2016. 5269–5273.
    [Google Scholar]
  8. TavakoliF., B., Ribodetti, A., Virieux, J. and Operto, S.
    [2015] An iterative factored eikonal solver for TTI media. In: SEG technical program expanded abstracts 2015, 687, 3576–3581.
    [Google Scholar]
  9. Waheed, U.B., Yarman, C.E. and Flagg, G.
    [2015] An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media. Geophysics, 80, C49–C58.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201700605
Loading
/content/papers/10.3997/2214-4609.201700605
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error