1887

Abstract

Summary

Foam can potentially solve the associated problems with gas injection by reducing the mobility of the injected gas leading to a more stable displacement front. It is known that under immiscible conditions, the presence of oil can be detrimental for foam stability through several mechanisms. Under miscible conditions, there is no separate oil or gas phase; instead, CO2 and oil mix in different proportions forming a phase with varying composition at the proximity of the displacement front. There are then two fundamental questions, which arise from addition of surfactant to the system: (1) what is the nature of the “mixed phase” in the presence of the surfactant, and (2) how do the properties of this mixture change with compositional variations? This study reports the results of core-flood experiments conducted using CO2 and decane (nC10) as the model oil under miscible conditions. Surfactant and a mixture of CO2-decane were co-injected with variations of CO2 molar fractions, mixture volume fractions and total flow rates. We found that separate injection of CO2 or oil with the surfactant solution into the cores creates in-situ fluids that exhibit both low-quality (increasing viscosity with decreasing fraction of surfactant) and high-quality (decreasing viscosity with decreasing fraction of surfactant) regimes. However, upon simultaneous injection of CO2 and oil with the surfactant solution and depending on the molar fraction of CO2 in CO2-decane mixture (xCO2), three distinct regimes were observed. In Regime 1 (xCO2>0.8) the apparent viscosity of the in-situ fluid was the highest and increased with increasing xCO2. In Regime 2 (xCO2<2) the apparent viscosity increased with decreasing xCO2. In Regime 3 (0.2< xCO2<0.8) the apparent viscosity of the fluid remained relatively low and insensitive to the value of xCO2. Shear-thinning rheology was observed in all three regimes: supercritical CO2 foam (xCO2 =1), decane emulsion (xCO2 = 0), as well as CO2-decane-surfactant floods. Moreover, in Regime 1 and Regime 2, there is a transition at shear rates from 10 s-1 to 100 s-1, where the apparent viscosity increases by one order of magnitude. In Regime 3, however, this transition is not observed. Finally, we found that the current implicit-texture foam model cannot simulate our experimental data.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201701793
2017-04-24
2020-04-02
Loading full text...

Full text loading...

References

  1. Alvarez, J. M., Rivas, H. J., Rossen, W. R.
    2001. Unified Model for Steady-State Foam Behavior at High and Low Foam Qualities. 10.2118/74141-PA.
    [Google Scholar]
  2. Ameri, A., Farajzadeh, R., Suicmez, V., Verlaan, M., Bruining, J.
    2013. Effect of Non-equilibrium Gas Injection on the Performance of (Immiscible and Miscible) Gas-Oil Gravity Drainage in Naturally Fractured Reservoirs. Energy & Fuels27 (10): 6055–6067. DOI: 10.1021/ef401372d.
    https://doi.org/10.1021/ef401372d. [Google Scholar]
  3. Andrianov, A., Farajzadeh, R., Mahmoodi Nick, M., Talanana, M., Zitha, P. L.
    2012. Immiscible foam for enhancing oil recovery: bulk and porous media experiments. Ind. Eng. Chem. Res51 (5): 2214–2226. DOI: 10.1021/ie201872v.
    https://doi.org/10.1021/ie201872v. [Google Scholar]
  4. Bergeron, V., Fagan, M., Radke, C.
    1993. Generalized entering coefficients: a criterion for foam stability against oil in porous media. Langmuir9 (7): 1704–1713 DOI: 10.2172/10192744.
    https://doi.org/10.2172/10192744. [Google Scholar]
  5. PVTsim 3 Method Documentation
    , 2017. Lyngby, Denmark., Calsep A/S.
    [Google Scholar]
  6. Chabert, M., Cuenca, A., Lacombe, E., Chevallier, E., Nabzar, L., Batot, G.
    2016. A Novel Fast-Track Methodology to Evaluate CO2 Foamers Performances. Paper presented at SPE Improved Oil Recovery Conference, 11–13 April, Tulsa, Oklahoma, USA. DOI: 10.2118/179632‑MS.
    https://doi.org/10.2118/179632-MS. [Google Scholar]
  7. CMG, C. M. G. L.
    2010. STARS User’s Guide. Calgary, Alberta, Canada, Computer Modelling Group Ltd (Reprint).
    [Google Scholar]
  8. Correa, A. C., Pande, K. K., Ramey, H. J.Jr., Brigham, W. E.
    1990. Computation and Interpretation of Miscible Displacement Performance in Heterogeneous Porous Media. SPERE5 (01). DOI: 10.2118/16704‑PA.
    https://doi.org/10.2118/16704-PA. [Google Scholar]
  9. Dindoruk, B., Firoozabadi, A.
    1996. Crossflow in Fractured/Layered Media Incorporating Gravity, Viscous, and Phase Behavior Effects: Part II-Features in Fractured Media. Paper presented at SPE/DOE Improved Oil Recovery Symposium, 21–24 April, Tulsa, USA. DOI: 10.2118/35458‑MS.
    https://doi.org/10.2118/35458-MS. [Google Scholar]
  10. Eftekhari, A. A., Krastev, R., Farajzadeh, R.
    2015. Foam Stabilized by Fly Ash Nanoparticles for Enhancing Oil Recovery. Industrial & Engineering Chemistry Research54 (50): 12482–12491. DOI: 10.1021/acs.iecr.5b03955.
    https://doi.org/10.1021/acs.iecr.5b03955. [Google Scholar]
  11. Farajzadeh, R., Andrianov, A., Krastev, R., Hirasaki, G., Rossen, W. R.
    2012. Foam-oil interaction in porous media: Implications for foam assisted enhanced oil recovery. Adv. Colloid Interface Sci. 183: 1–13. DOI: 10.1016/j.cis.2012.07.002.
    https://doi.org/10.1016/j.cis.2012.07.002. [Google Scholar]
  12. Farajzadeh, R., Andrianov, A., Zitha, P.
    2009. Investigation of immiscible and miscible foam for enhancing oil recovery. Ind. Eng. Chem. Res49 (4): 1910–1919. DOI: 10.1021/ie901109d.
    https://doi.org/10.1021/ie901109d. [Google Scholar]
  13. Farajzadeh, R., Eftekhari, A. A., Hajibeygi, H., Kahrobaei, S., van der Meer, J. M., Vincent-Bonnieu, S., Rossen, W. R.
    2016. Simulation of instabilities and fingering in surfactant alternating gas (SAG) foam enhanced oil recovery. Journal of Natural Gas Science and Engineering34: 1191–1204. DOI: 10.1016/j.jngse.2016.08.008.
    https://doi.org/10.1016/j.jngse.2016.08.008. [Google Scholar]
  14. Farajzadeh, R., Krastev, R., Zitha, P.
    2008. Foam films stabilized with alpha olefin sulfonate (AOS). Colloids and Surfaces A: Physicochemical and Engineering Aspects324 (1): 35–40. DOI: 10.1016/j.colsurfa.2008.03.024.
    https://doi.org/10.1016/j.colsurfa.2008.03.024. [Google Scholar]
  15. Farajzadeh, R., Lotfollahi, M., Eftekhari, A., Rossen, W., Hirasaki, G.
    2015. Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure. Energy & fuels29 (5): 3011–3018. DOI: 10.1021/acs.energyfuels.5b00248.
    https://doi.org/10.1021/acs.energyfuels.5b00248. [Google Scholar]
  16. Friedmann, F., Jensen, J. A.
    1986. Some Parameters Influencing the Formation and Propagation of Foams in Porous Media. Paper presented at SPE California Regional Meeting, 2–4 April, California. DOI: 10.2118/15087‑MS.
    https://doi.org/10.2118/15087-MS. [Google Scholar]
  17. Heller, J. P.
    1994. CO2 Foams in Enhanced Oil Recovery. In Foams: Fundamentals and Applications in the Petroleum Industry, Chap. 5, 201–234. Advances in Chemistry, American Chemical Society. DOI: 10.1021/ba‑1994‑0242.ch005.
    https://doi.org/10.1021/ba-1994-0242.ch005. [Google Scholar]
  18. Herzhaft, B., Rousseau, L., Neau, L., Moan, M., Bossard, F.
    2002. Influence of Temperature and Clays/Emulsion Microstructure on Oil-Based Mud Low Shear Rate Rheology. Paper presented at SPE Annual Technical Conference and Exhibition, 29 September-2 October, San Antonio, Texas. DOI: 10.2118/77818‑MS.
    https://doi.org/10.2118/77818-MS. [Google Scholar]
  19. Holm, L. W., Josendal, V. A.
    1974. Mechanisms of Oil Displacement By Carbon Dioxide. Journal of Petroleum Technology26 (12): 1.427 – 1.438. DOI: 10.2118/4736‑PA.
    https://doi.org/10.2118/4736-PA. [Google Scholar]
  20. Hudgins, D. A., Chung, T. H.
    1990. Long-Distance Propagation of Foams. Paper presented at SPE/DOE Enhanced Oil Recovery Symposium, 22–25 April, Tulsa, Oklahoma. DOI: 10.2118/20196‑MS.
    https://doi.org/10.2118/20196-MS. [Google Scholar]
  21. Kahrobaei, S., Farajzadeh, R., Suicmez, V. S., Bruining, J.
    2012. Gravity-enhanced transfer between fracture and matrix in solvent-based enhanced oil recovery. Ind. Eng. Chem. Res51 (44): 14555–14565. DOI: 10.1021/ie3014499.
    https://doi.org/10.1021/ie3014499. [Google Scholar]
  22. Kam, S. I., Nguyen, Q. P., Li, Q., Rossen, W. R.
    2007. Dynamic simulations with an improved model for foam generation. SPE Journal12 (01): 35–48
    [Google Scholar]
  23. Khatib, Z. I., Hirasaki, G. J., Falls, A. H.
    1988. Effects of Capillary Pressure on Coalescence and Phase Mobilities in Foams Flowing Through Porous Media. SPERE3 (03): 919 – 926. DOI: 10.2118/15442‑PA.
    https://doi.org/10.2118/15442-PA. [Google Scholar]
  24. Law, D.-S., Yang, Z.-M., Stone, T.
    1992. Effect of the presence of oil on foam performance: a field simulation study. SPERE7 (02): 228–236. DOI: 10.2118/18421‑PA.
    https://doi.org/10.2118/18421-PA. [Google Scholar]
  25. Ma, K., Farajzadeh, R., Lopez-Salinas, J. L., Miller, C. A., Biswal, S. L., Hirasaki, G. J.
    2014. Non-uniqueness, numerical artifacts, and parameter sensitivity in simulating steady-state and transient foam flow through porous media. Transport in porous media102 (3): 325–348. DOI: 10.1007/s11242‑014‑0276‑9.
    https://doi.org/10.1007/s11242-014-0276-9. [Google Scholar]
  26. Ma, K., Lopez-Salinas, J. L., Puerto, M. C., Miller, C. A., Biswal, S. L., Hirasaki, G. J.
    2013. Estimation of Parameters for the Simulation of Foam Flow through Porous Media. Part 1: The Dry-Out Effect. Energy & Fuels27 (5): 2363–2375. DOI: 10.1021/ef302036s.
    https://doi.org/10.1021/ef302036s. [Google Scholar]
  27. Mannhardt, K., Novosad, J. J., Schramm, L. L.
    1996. Core flood evaluation of hydrocarbon solvent foams. JPSE14 (3): 183–195. DOI: 10.1016/0920‑4105(95)00046‑1.
    https://doi.org/10.1016/0920-4105(95)00046-1. [Google Scholar]
  28. Peng, D.-Y., Robinson, D. B.
    1976. A new two-constant equation of state. Ind. Eng. Chem. Fundam15 (1): 59–64
    [Google Scholar]
  29. Romero, L., Ziritt, J., Marin, A., Rojas, F., Mogollon, J., Paz, E. M. F.
    1996. Plugging of high permeability-fractured zones using emulsions. Paper presented at SPE/DOE Improved Oil Recovery Symposium, 21–24 April, Tulsa, USA. DOI: 10.2118/35461‑MS.
    https://doi.org/10.2118/35461-MS. [Google Scholar]
  30. Rossen, W. R., Wang, M. W.
    1999. Modeling Foams for Acid Diversion. SPEJ4 (02): 92 – 100. 10.2118/56396-PA.
    [Google Scholar]
  31. Schramm, L. L.
    1994. Foam sensitivity to crude oil in porous media. Advances in Chemistry Series242:165–165
    [Google Scholar]
  32. Suffridge, F. E., Raterman, K. T., Russell, G. C.
    1989. Foam Performance Under Reservoir Conditions. Paper presented at SPE Annual Technical Conference and Exhibition, 8–11 October,, San Antonio, USA. DIO: 10.2118/SPE‑19691‑MS.
    https://doi.org/10.2118/SPE-19691-MS [Google Scholar]
  33. Verlaan, M., Boerrigter, P. M.
    2006. Miscible Gas-Oil Gravity Drainage. Paper presented at International Oil Conference and Exhibition in Mexico, 31 August–2 September, Cancun, Mexico. DOI: 10.2118/103990‑MS.
    https://doi.org/10.2118/103990-MS. [Google Scholar]
  34. Xiao, C., Balasubramanian, S. N., Clapp, L. W.
    2016. Rheology of Supercritical CO2 Foam Stabilized by Nanoparticles. Paper presented at SPE Improved Oil Recovery Conference, 11–13 April, Tulsa, Oklahoma, USA. DOI: 10.2118/179621‑MS.
    https://doi.org/10.2118/179621-MS. [Google Scholar]
  35. Yang, S. H., Reed, R. L.
    1989. Mobility Control Using CO2 Forms. Paper presented at SPE Annual Technical Conference and Exhibition, 8–11 October, , San Antonio, Texas. DOI: 10.2118/19689‑MS.
    https://doi.org/10.2118/19689-MS. [Google Scholar]
  36. Yu, J., An, C., Mo, D., Liu, N., Lee, R. L.
    2012. Foam Mobility Control for Nanoparticle-Stabilized Supercritical CO2 Foam. Paper presented at SPE Improved Oil Recovery Symposium, 14–18 April, Tulsa, Oklahoma, USA. DOI: 10.2118/153336‑MS.
    https://doi.org/10.2118/153336-MS. [Google Scholar]
  37. Zeng, Y., Farajzadeh, R., Eftekhari, A. A., Vincent-Bonnieu, S., Muthuswamy, A., Rossen, W. R., Hirasaki, G. J., Biswal, S. L.
    2016. Role of Gas Type on Foam Transport in Porous Media. Langmuir32 (25): 6239–6245. DOI: 10.1021/acs.langmuir.6b00949.
    https://doi.org/10.1021/acs.langmuir.6b00949. [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201701793
Loading
/content/papers/10.3997/2214-4609.201701793
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error