1887

Abstract

Summary

This study proposes an original method for the detailed characterization of the weathering profile in hard rock (plutonic and metamorphic) contexts by electrical resistivity imaging (Electrical Resistivity Tomography —ERT). The main objective is to identify the electrical signature of the different layers constituting the weathering profile, more specifically that of the laminated layer. Location of the latter is an important issue for geological (saprolite thickness assessment) and hydrogeological (location of productive boreholes) purposes.

The dual approach presented here firstly focuses on real datasets obtained from field measurements acquired in both granitic (1 site) and metamorphic (3 sites) environments. Then, synthetic modeling, based on real data results, were performed in order to test the sensitivity of the ERT method to identify and characterize the layers of the weathering profile depending on the geometry (thickness) and the resistivity of the laminated layer and the Stratiformed Fractured Layer - SFL.

The results so obtained highlighted for the first time (i) the complex electrical signature of the weathering profile, (ii) the resistant nature of the laminated layer and (iii) a resistivity gradient at the base of the SFL.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201702054
2017-09-03
2020-06-03
Loading full text...

Full text loading...

References

  1. Belle, P., Lachassagne, P., Mathieu, F., Barbet, C., et Bonneval, F.
    [2016]. Nouvelles avancées dans l’interprétation géologique et hydrogéologique des profils de tomographie électrique en contexte de socle granitique et métamorphique. Géologues, 191, 13–17.
    [Google Scholar]
  2. Belle, P., Lachassagne, P., Mathieu, F., Barbet, C., et Brisset, N.
    [2017]. Characterization and location of the laminated layer within hard rock weathering profiles from electrical resistivity tomography. Application for water well siting. Geological Society, London, Special Publications.
    [Google Scholar]
  3. Boutt, D. F., Diggins, P., et Mabee, S.
    [2010]. A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeology Journal, 18(8), 1839–1854. DOI: 10.1007/s10040‑010‑0640‑y
    https://doi.org/10.1007/s10040-010-0640-y [Google Scholar]
  4. Choubert, B.
    [1960]. Carte géologique de la Guyane française à l’échelle du 1/500 000 en couleurs (2 feuilles: Nord et Sud). Serv. Carte Géol. France, Départ. Guyane.
    [Google Scholar]
  5. Courtois, N., Lachassagne, P., Wyns, R., Blanchin, R., Bougaïré, F. D., Somé, S., et Tapsoba, A.
    [2010]. Large-Scale Mapping of Hard-Rock Aquifer Properties Applied to Burkina Faso. Ground Water, 48(2), 269–283. DOI: 10.1111/j.1745‑6584.2009.00620.x
    https://doi.org/10.1111/j.1745-6584.2009.00620.x [Google Scholar]
  6. Dewandel, B., Alazard, M., Lachassagne, P., Bailly-Comte, V., Couëffé, R., Grataloup, S., … Wyns, R.
    [2017]. Respective roles of the weathering profile and the tectonic fractures in the structure and functioning of crystalline thermo-mineral carbo-gaseous aquifers. Journal of Hydrology, 547, 690–707. DOI: 10.1016/j.jhydrol.2017.02.028
    https://doi.org/10.1016/j.jhydrol.2017.02.028 [Google Scholar]
  7. Dewandel, B., Lachassagne, P., Wyns, R., Maréchal, J. C., et Krishnamurthy, N. S.
    [2006]. A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330(1), 260–284. DOI: 10.1016/j.jhydrol.2006.03.026
    https://doi.org/10.1016/j.jhydrol.2006.03.026 [Google Scholar]
  8. Lachassagne, P., Dewandel, B., et Wyns, R.
    [2017]. Hydrogeology of wheatered crystalline/hard rock aquifers. Operational applications for their survey and management. Geological Society, London, Special Publications.
    [Google Scholar]
  9. Lachassagne, P., Wyns, R., et Dewandel, B.
    [2011]. The fracture permeability of Hard Rock Aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145–161. DOI: 10.1111/j.1365‑3121.2011.00998.x
    https://doi.org/10.1111/j.1365-3121.2011.00998.x [Google Scholar]
  10. Loke, M. H., et Barker, R. D.
    [1996]. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44(1), 131–152. DOI: 10.1111/j.1365‑2478.1996.tb00142.x
    https://doi.org/10.1111/j.1365-2478.1996.tb00142.x [Google Scholar]
  11. Mathieu, F. et Baïsset, M.
    [2015] — Prospection géophysique par la méthode du panneau électrique sur les sites de Sparouine et de l’îlet Bastien - commune de Saint Laurent du Maroni - Guyane. Rapport final. BRGM/RP-64467-FR
    [Google Scholar]
  12. Mathieu, F., et Maurice, B.
    [2016]. Investigation géophysiques par tomographie de résistivité électrique sur le gisement de Badoit, Saint-Galmier - Campagne 2015-2016. Rapport final. BRGM/RP-65614-FR
  13. Robain, H., et Bobachev, A.
    [2002]. X2IPI : user manual, (1), 25.
    [Google Scholar]
  14. Wyns, R., Baïsset, M., et Parizot, M.
    [2012]. Détermination de secteurs favorables pour la recherche en eau souterraine sur la commune de Roura - Guyane.
  15. Wyns, R., Gourry, J. C., Baltassat, J. M., et Lebert, F.
    [1999]. Caractérisation multiparamètres des horizons de subsurface (0–100 m) en contexte de socle altéré. In BRGM, IRD, UPMC (Eds) (Éd.), 2ème Colloque GEOFCAN, Orléans, France (p. 105–110).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201702054
Loading
/content/papers/10.3997/2214-4609.201702054
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error