1887

Abstract

Summary

In this paper, we presented an approach on how to consider the electrode effect on micro-electrical resistivity tomography data. The case study is set on an underground quarry wall under a fire. The used dispositive is made up of 24 rode-like electrodes that reach a depth of about half the electrode spacing. We demonstrate that at such a small scale, with a spacing of 4cm and for a homogeneous model, the effect is diminished with the presence of a superficial conductive layer. We suggested here a methods to do so: by modelling the half-space with complete electrode and by searching for an equivalent EEP depth. Such depth can then be implemented on the real data field for the inversion. We demonstrate here that the electrode effect is also lowered in case of a first conductive layer on field. We also showed that the fire created a first conductive layer and an intermediate layer from 3 to 15 cm that is more resistive than before the fire, where we had a two layers medium (conductive over resistive layer).

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201702072
2017-09-03
2024-04-24
Loading full text...

Full text loading...

References

  1. Clement, R., Moreau, S.
    [2016] How should an electrical resistivity tomography laboratory test cell be designed? Numerical investigation of error on electrical resistivity measurement. J. Appl. Geophys., 127, 45–55. doi:10.1016/j.jappgeo.2016.02.008
    https://doi.org/10.1016/j.jappgeo.2016.02.008 [Google Scholar]
  2. Gomez, C.T., Dvorkin, J., Vanorio, T.
    [2010] Laboratory measurements of porosity, permeability, resistivity, and velocity on Fontainebleau sandstones. GEOPHYSICS, 75, E191–E204. doi:10.1190/1.3493633
    https://doi.org/10.1190/1.3493633 [Google Scholar]
  3. Günther, T., Rücker, C., Spitzer, K.
    [2006] Three-dimensional modelling and inversion of dc resistivity data incorporating topography - II. Inversion. Geophys. J. Int., 166, 506–517. doi:10.1111/j.1365‑246X.2006.03011.x
    https://doi.org/10.1111/j.1365-246X.2006.03011.x [Google Scholar]
  4. Ronczka, M., Rücker, C., Günther, T.
    [2015] Numerical study of long-electrode electric resistivity tomography — Accuracy, sensitivity, and resolution. GEOPHYSICS, 80, E317–E328. doi:10.1190/geo2014‑0551.1
    https://doi.org/10.1190/geo2014-0551.1 [Google Scholar]
  5. Rücker, C., Günther, T.
    [2011] The simulation of finite ERT electrodes using the complete electrode model. GEOPHYSICS, 76, F227–F238. doi:10.1190/1.3581356
    https://doi.org/10.1190/1.3581356 [Google Scholar]
  6. Rucker, D.F., Loke, M.H., Levitt, M.T., Noonan, G.E.
    [2010] Electrical-resistivity characterization of an industrial site using long electrodes. GEOPHYSICS, 75, WA95–WA104. doi:10.1190/1.3464806
    https://doi.org/10.1190/1.3464806 [Google Scholar]
  7. Verdet, C., Sirieix, C., Anguy, Y., Gaborieau, C., Ferrier, C., Leblanc, J.-C., Mindeguia, J.-C., Lacanette-Puyo, D., Naessens, F., Allègre, V., Sommier, A., Queffelec, A.
    [2016] Suivi par microtomographie de résistivité électrique d’une paroi de carrière calcaire soumise au feu. Presented at the 10ème Colloque GEOFCAN (Approche GEOphysique et structurale de l’organisation spatiale et du Fonctionnement des Couvertures pédologiques Anthropisées et Naturelles), BRGM, Orléans, p. 4p.
    [Google Scholar]
  8. Xu, S., Sirieix, C., Ferrier, C., Lacanette-Puyo, D., Riss, J., Malaurent, P.
    [2015] A Geophysical Tool for the Conservation of a Decorated Cave — a Case Study for the Lascaux Cave. Archaeol. Prospect., 22, 283–292. doi:10.1002/arp.1513
    https://doi.org/10.1002/arp.1513 [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201702072
Loading
/content/papers/10.3997/2214-4609.201702072
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error