Principal component analysis from microtremor data can be used to identify the potential landslide with azimuth and dip correlation, also the principal component data is compared with soil vulnerability index based on the calculation.


Article metrics loading...

Loading full text...

Full text loading...


  1. Ammosov, S.M., Kalinina, A.V., Volkov, V.A.
    , 2007. Using a three-component KMV seismometer for recording microtremors in the zone of a landslide slope. Seism. Instrum. 43, 26–33. https://doi.org/10.3103/S0747923907010045
    [Google Scholar]
  2. Che, A., Luo, X., Feng, S., Yoshiya, O.
    , 2008. Application of surface wave and microtremor survey in landslide investigation in the Three Gorges reservoir area, Landslides and Engineered slopes from the past to the future. Taylor & Francis Group, London.
    [Google Scholar]
  3. Che, A.L., Qi, J.H., Wu, X.P., Iwatate, T., Yoshimine, M., Oda, Y., Ma, Q.W., Zhang, F., Wu, Z.J.
    , 2009. Application of microtremor observation on investigation of geological hazard induced by the great Wenchen earthquake in Sichuan province, Performance-Based Design in Earthquake Geotechnical Engineering. Taylor & Francis Group, London.
    [Google Scholar]
  4. Coccia, S., Del Gaudio, V., Venisti, N., Wasowski, J.
    , 2010. Application of Refraction Microtremor (ReMi) technique for determination of 1-D shear wave velocity in a landslide area. J. Appl. Geophys. 71, 71–89. https://doi.org/10.1016/j.jappgeo.2010.05.001
    [Google Scholar]
  5. Del Gaudio, V., Coccia, S., Wasowski, J., Gallipoli, M.R., Mucciarelli, M.
    , 2008. Detection of directivity in seismic site response from microtremor spectral analysis. Nat. Hazards Earth Syst. Sci.8.
    [Google Scholar]
  6. Izomi, S., Ohara, S.
    , 1999. Measurement of Microtremors on the Surfaces of Slopes28, 187–194.
    [Google Scholar]
  7. Jongmans, D., Bièvre, G., Renalier, F., Schwartz, S., Beaurez, N., Orengo, Y.
    , 2009. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng. Geol. 109, 45–56. https://doi.org/10.1016/j.enggeo.2008.10.005
    [Google Scholar]
  8. Loke, M.H.
    , 1999. Electrical imaging surveys for environmental and engineering studies. Pract. Guide To 2.
    [Google Scholar]
  9. Meric, O., Garambois, S., Malet, J.-P., Cadet, H., Guéguen, P., Jongmans, D.
    , 2007. Seismic noise-based methods for soft-rock landslide characterization. Bull Soc Géol Fr137–148.
    [Google Scholar]
  10. Nakamura, Y.
    , 2000. Clear identification of fundamental idea of Nakamura’s technique and its applications.
    [Google Scholar]
  11. Naudet, V., Lazzari, M., Perrone, A., Loperte, A., Piscitelli, S., Lapenna, V.
    , 2008. Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy). Eng. Geol. 98, 156–167. https://doi.org/10.1016/j.enggeo.2008.02.008
    [Google Scholar]
  12. Saenger, E.H., Schmalholz, S.M., Lambert, M.-A., Nguyen, T.T., Torres, A., Metzger, S., Habiger, R.M., Müller, T., Rentsch, S., Méndez-Hernández, E.
    , 2009. A passive seismic survey over a gas field: Analysis of low-frequency anomalies. GEOPHYSICS74, O29–O40. https://doi.org/10.1190/1.3078402
    [Google Scholar]
  13. Sassa, K., Canuti, P.
    (Eds.), 2009. Landslides - disaster risk reduction. Springer, Berlin.
    [Google Scholar]
  14. Sungkono, B.J.
    , 2012. Karakterisasi Kurva Horizontal-to-Vertical Spectral Ratio: Kajian Literatur dan Permodelan. J. Neutrino.
    [Google Scholar]
  15. Uhlemann, S., Hagedorn, S., Dashwood, B., Maurer, H., Gunn, D., Dijkstra, T., Chambers, J.
    , 2016. Landslide characterization using P- and S-wave seismic refraction tomography — The importance of elastic moduli. J. Appl. Geophys. 134, 64–76. https://doi.org/10.1016/j.jappgeo.2016.08.014
    [Google Scholar]
  16. Van Dam, R.L.
    , 2012. Landform characterization using geophysics—Recent advances, applications, and emerging tools. Geomorphology137, 57–73. https://doi.org/10.1016/j.geomorph.2010.09.005
    [Google Scholar]
  17. Wang, S., Malehmir, A., Bastani, M.
    , 2016. Geophysical characterization of areas prone to quick-clay landslides using radio-magnetotelluric and seismic methods. Tectonophysics677–678, 248–260. https://doi.org/10.1016/j.tecto.2016.04.020
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error