1887

Abstract

Summary

Carbonate rocks usually present a complex porous system, especially regarding the differences in pore geometry. When those rocks are submitted to external pressure variation, that variations in pore geometry may affect the elastic velocities. In this work, we studied the behavior of compressional and shear wave velocities in a set of carbonate rocks at different pressure stages. Our approach is based in a supposition of a dual porosity scenario and consisted in determining the mean value of the aspect ratio of the macro-meso pores through the analysis of optical microscopy images and use the Differential Effective Medium (DEM) theory to estimate the microporosity aspect ratio. The results showed that such microporosity aspect ratio decreases exponentially as pressure increases.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201800866
2018-06-11
2024-04-19
Loading full text...

Full text loading...

References

  1. ARCHILHA, N., MISSAGIA, R., CEIA, M., LIMA NETO, I., CASTRO, L., SOUZA, F.
    2013. Petrophysical, mineralogical and P-wave velocity characterization of Albian carbonates from Campos Basin, Brazil. SEG Technical Program Expanded Abstracts2989–2993. http://dx.doi.org/10.1190/segam2013-0676.1.
    [Google Scholar]
  2. BERRYMAN, J. G.
    Single-scattering approximations for coefficients in Biot’s equations of poroelasticity. 1992. The Journal of the Acoustical Society of America, v. 91, p. 551–571. DOI: http://dx.doi.org/10.1121/1.402518.
    [Google Scholar]
  3. BURCHETTE, T. P.
    2012. Carbonate rocks and petroleum reservoirs: a geological perspective from the industry. Geological Society, London, Special Publications, v. 370, p. 17–37. DOI: http://dx.doi.org/10.1144/SP370.14.
    [Google Scholar]
  4. CEIA, M. R.; MISSAGIA, R. M.; LIMA NETO, I. L., BASTOS JR., A., FIGUEIREDO, L., OLIVEIRA, G.
    2015. Comparison of static and dynamic pore compressibilities in carbonates. In: 14th International Congress of the Brazilian Geophysical Society-SBGf. Rio de Janeiro, Brazil. P.853. DOI: http://dx.doi.org/10.1190/sbgf2015-168
    [Google Scholar]
  5. EBERLI, G. P.; BAECHLE, G. T.; ANSELMETTI, F. S.; INCZE, M. L.; DONG, W.; TURA, A.; SPARKMAN, G.
    Factors controlling elastic properties in carbonate sediments and rocks. The Leading Edge, v. 22, p. 6542013;660, 2003. DOI: http://dx.doi.org/10.1190/1.1599691.
    [Google Scholar]
  6. FIGUEIREDO, L. A.2015. Avaliação do sistema poroso e estimativa de permeabilidade utilizando equações modificadas de kozeny em rochas siliciclásticas e carbonáticas. Dissertação de mestrado — Lab. de Eng. e Expl. de Petróleo, Universidade Estadual do Norte Fluminense, Macaé, Rio de Janeiro. (In Portuguese)
    [Google Scholar]
  7. GROVE, C., JERRAM, D.A.
    , 2011. jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections, Computers and Geoscience., 37, 1850–1859
    [Google Scholar]
  8. LIMA NETO, I.A., MISSÁGIA, R.M., CEIA, M.A., ARCHILHA, N.L., OLIVEIRA, L.C.
    , 2014. Carbonate pore system evaluation using the velocity-porosity—pressure relationship, digital image analysis, and differential effective medium theory. Elsevier, Journal of Applied Geophysics110, 23–33. DOI: http://dx.doi.org/10.1016/j.jappgeo.2014.08.013.
    [Google Scholar]
  9. LIMA NETO, I. A.; MISSAGIA, R. M.; CEIA, M. A.; ARCHILHA, N. L.; HOLLIS, C
    . 2015. Evaluation of carbonate pore system under texture control for prediction of microporosity aspect ratio and shear wave velocity. Sedimentary Geology, v. 323, p. 43–65. DOI: http://dx.doi.org/10.1016/j.sedgeo.2015.04.011
    [Google Scholar]
  10. LUCIA, F. J.
    2007. Carbonate reservoir characterization: An Integral Approach, 2nd ed. Heidelberg: Springer Science, 337 p.
    [Google Scholar]
  11. OLIVEIRA, G. L.; CEIA, M. R.; MISSÁGIA, R. M.; ARCHILHA, N. L.; FIGUEIREDO, L. A.; SANTOS, V. H.; LIMA NETO, I.
    2016. Pore volume compressibilities of sandstones and carbonates from Helium porosimetry measurements. Journal of Petroleum Science and Engineering, n. 137, p. 185–201. http://dx.doi.org/10.1016/j.petrol.2015.11.022
    [Google Scholar]
  12. SCHÖN, J. H.
    2011. Physical Properties of Rocks: a workbook. Amsterdam: Elsevier, 481p.
    [Google Scholar]
  13. XU, S., PAYNE, M.A.
    2009. Modeling elastic properties in carbonate rocks. Special section: Rock Physics. The Lead. Edge 28, 66–74. http://dx.doi.org/10.1190/1.3064148.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201800866
Loading
/content/papers/10.3997/2214-4609.201800866
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error