The geothermal resources of Germany are limited to intermediate and low enthalpy resources (below 200 °C). The hydrothermal resources are predominantly used for balneological applications, space and district heating and even for power production at currently nine sites. Besides balneology, the confined aquifers in northern Bavaria also hold the potential for energy storage.

Therefore, available data was collected and interpreted with the objective to map the hydraulic conductivity of aquifers and to integrate these maps into the Geothermal Information System (GeotIS), a public web-based information system for geothermal project planners, scientists, municipal energy suppliers, and public authorities. About 80 % of all sampling sites show transmissivity and hydraulic conductivity values sufficient for geothermal energy utilization or energy storage. For the Keuper aquifer, even 95% of all sampling sites show transmissivities sufficient for geothermal energy utilization.

These maps do not replace a feasibility study because detailed geological site assessment is still essential when planning a new geothermal facility. As part of this study, a lot of processed geological, hydraulic, and subsurface temperature data will be transferred to the Geothermal Information System GeotIS.


Article metrics loading...

Loading full text...

Full text loading...


  1. Agemar, T., Alten, J., Ganz, B., Kuder, J., Kuhne, K., Schumacher, S. and Schulz, R.
    [2014a] We_P_12System for Germany – GeotlS. Z. Dt. Ges. Geowiss., 165(2), 129–144.
    [Google Scholar]
  2. Agemar, T., Weber, J. and Schulz, R.
    [2014b] Deep Geothermal Energy Production in Germany. Energies7(7), 4397–1416.
    [Google Scholar]
  3. Bauer, W.
    [2000] Geothermische Verhaltnisse des Frankischen Beckens (Nordbayern/Sudthuringen). Wurzburg, Lehr- und Forschungsbereich Hydrogeologie und Umwelt, Universitdt Wurzburg, 186.
    [Google Scholar]
  4. Bayerisches Landesamt für Umwelt
    Bayerisches Landesamt für Umwelt [1997] Geologische Karte von Bayern 1:500.000. München.
    [Google Scholar]
  5. Grimm, W.-D. and Hofbauer, J.
    [1967] Die Grundwasserkarte von Bayern 1:25000. I. Teil Idee, Gestaltung und Organisation. Deutsche Gewdsserkundliche Mitteilungen.Special edition, 113–115.
    [Google Scholar]
  6. Fritzer, T., Settles, E. and Dorsch, K.
    [2014] Bayerischer Geothermieatlas. Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie, München, 96.
    [Google Scholar]
  7. Logan, J.
    [1964] Estimating Transmissibility from Routine Production Tests of Water Wells. Groundwater2(1), 35–37.
    [Google Scholar]
  8. Mader, D.
    [1985] Depositional Mechanisms and Facies Models of Intertonguing Aeolian Environment and Fluvial Milieu in the Middle Buntsandstein of the Mid-European Triassic Basin. In: MaderD. (Ed.) Aspects of Fluvial Sedimentation in the Lower Triassic Buntsandstein of Europe.Springer, Berlin/Heidelberg/NewYork/Tokyo, 626.
    [Google Scholar]
  9. Schröder, B.
    [1982] Entwicklung des Sedimentbeckens und Stratigraphie der klassischen Germanischen Trias. Geologische Rundschau71(3), 783–794.
    [Google Scholar]
  10. Sichardt, W.
    [1927] Über Tiefsenkung des Grundwasserspiegels. Bautechnik, 683, 718, 730.
    [Google Scholar]
  11. Thiem, A.
    [1870] Die Ergiebigkeit artesischer Bohrlöcher, Schachtbrunnen und Filtergalerien. Journal für Gasbeleuchtung und Wasserversorgung14, 450–467.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error