1887

Abstract

Summary

A 3D temperature distribution beneath the Trøndelag Platform, the Møre and Vøring basins of the Mid-Norwegian continental margin and adjacent areas of the continent has been obtained based on the recently constructed lithosphere-scale 3D structural model of the studied region. There is a clear correlation the between the major tectonic elements of the continental margin and the modelled temperatures, showing an increase of the calculated temperatures from the continental lithospheric domain towards the oceanic one. The modelled temperature is highest within the Vøring Basin where a thermal insulation of the sedimentary cover increases the heat storage within the areas where low thermally conductive sedimentary rocks are relatively thickest. The Møre Basin is represented by lower temperatures compared to the Vøring Basin where the sedimentary cover is the thickest one. The Trøndelag Platform is characterized by even lower modelled temperatures, reflecting a fact that this area was less affected by crustal thinning and has thinner sedimentary infill. The modelled temperatures are representative for the subsurface regional-scale 3D conductive thermal field and show a general good fit with the temperatures measured in the available wells.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201801774
2018-05-14
2020-03-29
Loading full text...

Full text loading...

References

  1. Breivik, A.J., Faleide, J.I., Mjelde, R., Flueh, R.
    , [2009]. Magma productivity and early seafloor spreading rate correlation on the northern Vøring Margin, Norway - Constraints on mantle melting, Tectonophysics, 468, 206–223.
    [Google Scholar]
  2. Breivik, A.J., Mjelde, R., Raum, T., Faleide, J.I., Murai, Y., Flueh, E.R.
    , [2011]. Crustal structure beneath the Trøndelag Platform and adjacent areas of the mid-Norwegian margin, as derived from wide-angle seismic and potential field data, Nor. J. Geol., 90, 141–161.
    [Google Scholar]
  3. Dowdeswell, J.A., Ottesen, D., Rise, L.
    , [2010]. Rates of sediment delivery from the Fennoscandian Ice Sheet through an ice age, Geology, 38, 3–6.
    [Google Scholar]
  4. Ebbing, J., Olesen, O.
    , [2010]. New compilation of basement and basement thickness for the Norwegian continental shelf reveals the segmentation of the passive margin system, in Petroleum Geology: From mature basins to new frontiers. Proceedings of the 7th Petroleum Geology Conference. Petroleum Geology Conference Series, 7, 885–897, eds. Vining, B.A. & Pickering, S.C., Geological Society of London.
    [Google Scholar]
  5. Eidvin, T., Bugge, T., Smelror, M.
    , [2007]. The Molo Formation, deposited by coastal progradation on the inner Mid-Norwegian continental shelf, coeval with the Kai Formation to the west and the Utsira Formation in the North Sea, Norwegian Journal of Geology, 87, 35–102.
    [Google Scholar]
  6. Gernigon, L., Broenner, M., Dumais, M.-A., Nasuti, A., Olesen, O., Solli, A., Roberts, D.
    , [2015]. Inheritance and basement tectonics of central Norway: evolution from onshore to deep offshore domains, in COOP Phase 2 - Crustal Onshore-Offshore Project, 167–213, eds Olesen, O. et al..
    [Google Scholar]
  7. Kvarven, T., Ebbing, J., Mjelde, R., Faleide, J.I., Libak, A., Thybo, H., Flueh, E.R., Murai, Y.
    , [2014]. Crustal structure across the land-ocean transition off Møre, mid-Norway, from wide-angle seismic and gravity data, Tectonophysics, 626, 21–40. http://dx.doi.org/10.1016/j.tecto.2014.03.021.
    https://doi.org/10.1016/j.tecto.2014.03.021 [Google Scholar]
  8. Maystrenko, Y., Scheck-Wenderoth, M.
    , [2009]. Density contrasts in the upper mantle and lower crust across the continent–ocean transition: constraints from 3-D gravity modelling at the Norwegian margin, Geophysical Journal International, 179, 536–548. doi: 10.1111/j.1365‑246X.2009.04273.x.
    https://doi.org/10.1111/j.1365-246X.2009.04273.x [Google Scholar]
  9. Maystrenko, Y.P., Gernigon, L.
    , [2018]. 3D temperature distribution beneath the Mid-Norwegian continental margin (the Vøring and Møre basins), Geophysical Journal International, 212 (1), 694–724, doi: 10.1093/gji/ggx377.
    https://doi.org/10.1093/gji/ggx377 [Google Scholar]
  10. Maystrenko, Y.P., Gernigon, L., Nasuti, A., Olesen, O.
    , [2018]. Deep structure of the Mid-Norwegian continental margin (the Vøring and Møre basins) according to 3D density and magnetic modelling, Geophysical Journal International, 212 (3), 1696–1721, doi: 10.1093/gji/ggx491.
    https://doi.org/10.1093/gji/ggx491 [Google Scholar]
  11. Mjelde, R., Digranes, P., van Schaack, M., Shimamura, H., Shiobara, H., Kodaira, S., Næss, O.
    , [2001]. Crustal structure of the outer Vøring Plateau, offshore Norway, from ocean bottom seismic and gravity data, J. Geophys Res, 106, 6769–6791.
    [Google Scholar]
  12. Mjelde, R., Kodaira, S., Sellevoll, M.A.
    , [1997]. Crustal structure of the central part of the Voring Basin, mid-Norway margin, from ocean bottom seismographs, Tectonophysics, 277, 235–257.
    [Google Scholar]
  13. Mjelde, R., Raum, T., Kandilarov, A., Murai, Y., Takanami, T.
    , [2009]. Crustal structure and evolution of the outer Møre Margin, NE Atlantic, Tectonophysics, 468, 224–243.
    [Google Scholar]
  14. Mjelde, R., Raum, T., Myhren, B., Shimamura, H., Murai, Y., Takanami, T., Karpuz, R., Næss, U.
    , [2005]. Continent-ocean transition on the Voring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data, J. geophys. Res., 110, B05101, 1–19.
    [Google Scholar]
  15. Mjelde, R., Shimamura, H., Kanazawa, T. Kodaira, S., Raum, T., Shiobara, H.
    , [2003]. Crustal lineaments, distribution of lower-crustal intrusives and structural evolution of the Voring Margin, NE Atlantic; new insight from wide-angle seismic models, Tectonophysics, 369, 199–218.
    [Google Scholar]
  16. Nirrengarten, M., Gernigon, L., Manatschal, G.
    , [2014]. Lower-crustal bodies in the Møre volcanic rifted margin: Geophysical determination and geological implications, Tectonophysics, 636, 143–157.
    [Google Scholar]
  17. Ottesen, D., Dowdeswell, J.A., Rise, L., Bugge, T.
    , [2012]. Large-scale development of the mid-Norwegian shelf over the last three million years and potential for hydrocarbon reservoirs in glacial sediments, Geological Society, London, Special Publications, 368, doi: 10.1144/SP368.6
    https://doi.org/10.1144/SP368.6 [Google Scholar]
  18. Raum, T., Mjelde, R., Digranes, P., Shimamura, H., Shiobara, K.S., Haatvedt, G., Sorenes, N., Thorbjornsen, T.
    , [2002]. Crustal structure of the southern part of the Voring Basin, mid-Norway margin, from wide-angle seismic and gravity data, Tectonophysics, 355, 99–126.
    [Google Scholar]
  19. Raum, T., Mjelde, R., Shimamura, H., Murai, Y., Brastein, E., Karpuz, R.M., Kravik, K., Kolstø, H.J.
    , [2006]. Crustal structure and evolution of the southern Vøring Basin and Vøring Transform Margin, NE Atlantic, Tectonophysics, 415, 167–202.
    [Google Scholar]
  20. Rise, L., Chand, S., Hjelstuen, S. Haflidason, H., Bøe, R.
    , [2010]. Late Cenozoic geological development of the south Vøring margin, mid-Norway, Marine and Petroleum Geology, 27, 1789–1803.
    [Google Scholar]
  21. Rise, L., Ottesen, D., Berg, K., Lundin, E.
    , 2005. Large-scale development of the mid-Norwegian margin during the last 3 million years, Marine and Petroleum Geology, 22, 33–44.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201801774
Loading
/content/papers/10.3997/2214-4609.201801774
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error