1887

Abstract

Summary

Higher-order spatial discretization has been used by many authors to reduce numerical diffusion and mitigate grid-orientation effects. EOR processes are particularly susceptible to numerical diffusion, since the active chemical substances are often transported by linear or weakly nonlinear waves. Most high-resolution methods reported in the literature are based on explicit temporal discretization, which imposes severe time-step restrictions. Herein, we investigate fully-implicit, second-order WENO schemes on unstructured grids. Accuracy and computational efficiency is compared to a standard first-order scheme for Voronoi and corner-point grids in 2D and 3D for black-oil type and compositional flow models.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201802269
2018-09-03
2024-03-29
Loading full text...

Full text loading...

References

  1. Bao, K., Lie, K.A., Moyner, O. and Liu, M.
    [2017] Fully implicit simulation of polymer flooding with MRST.Comput. Geosci., 21(5–6), 1219–1244.
    [Google Scholar]
  2. Bell, J.B., Colella, P. and Trangenstein, J.A.
    [1989] Higher order Godunov methods for general systems of hyperbolic conservation laws.J. Comput. Phys., 82(2), 362–397.
    [Google Scholar]
  3. Blunt, M. and Rubin, B.
    [1992] Implicit flux limiting schemes for petroleum reservoir simulation.J. Comput. Phys., 102(1), 194–210.
    [Google Scholar]
  4. Chang, Y.B., Pope, G.A. and Sepehrnoori, K.
    [1990] A higher-order finite-difference compositional simulator.J. Petrol. Sci. Eng, 5(1), 35–50.
    [Google Scholar]
  5. Chertock, A., Kurganov, A. and Petrova, G.
    [2009] Fast explicit operator splitting method for convection-diffusion equations.Int. J. Num. Meth. Fluids, 59(3), 309–332.
    [Google Scholar]
  6. Christie, M.A. and Blunt, M.J.
    [2001] Tenth SPE comparative solution project: a comparison of upscaling techniques.SPE Reserv. Eval. Eng., 4, 308–317.
    [Google Scholar]
  7. Christov, I. and Popov, B.
    [2008] New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws.J. Comput. Phys., 227(11), 5736–5757.
    [Google Scholar]
  8. Edwards, M.G.
    [1996] A higher-order Godunov scheme coupled with dynamic local grid refinement for flow in a porous medium.Comp. Meth. Appl. Mech. Eng., 131(3), 287–308.
    [Google Scholar]
  9. Epshteyn, Y. and Riviére, B.
    [2007] Fully implicit discontinuous finite element methods for two-phase flow.Appl. Numer. Math., 57(4), 383–401.
    [Google Scholar]
  10. Friedrich, O.
    [1998] Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids.J. Comput. Phys., 144(1), 194–212.
    [Google Scholar]
  11. Gottlieb, S., Shu, C.W. and Tadmor, E.
    [2001] Strong stability-preserving high-order time discretization methods.SIAM Review, 43(1), 89–112.
    [Google Scholar]
  12. Harten, A.
    [1984] On a class of high resolution total-variation-stable finite-difference schemes.SIAM J. Numer. Anal., 21(1), 1–23.
    [Google Scholar]
  13. Heinemann, Z.E., Brand, C.W., Munka, M. and Chen, Y.M.
    [1991] Modeling reservoir geometry with irregular grids.SPE Reserv. Eng., 6(2), 225–232.
    [Google Scholar]
  14. Holing, K., Alvestad, J. and Trangenstein, J.A.
    [1990] The use of second-order Godunov-type methods for simulating EOR processes in realistic reservoir models. In: ECMOR II- 2ndEuropean Conference on the Mathematics ofOil Recovery.
    [Google Scholar]
  15. Hornung, R.D. and Trangenstein, J.A.
    [1997] Adaptive mesh refinement and multilevel iteration for flow in porous media.J. Comput. Phys., 136(2), 522–545.
    [Google Scholar]
  16. Jessen, K., Gerritsen, M.G. and Mallison, B.T.
    [2008] High-resolution prediction of enhanced condensate recovery processes.SPE J., 13(2), 257–266.
    [Google Scholar]
  17. Jiang, G.S. and Shu, C.W.
    [1996] Efficient implementation of weighted ENO schemes.J. Comput. Phys., 126(1), 202–228.
    [Google Scholar]
  18. Jiang, J. and Younis, R.M.
    [2017] An efficient fully-implicit multislope MUSCL method for multiphase flow with gravity in discrete fractured media.Adv. Water Resour., 104, 210–222.
    [Google Scholar]
  19. Kaibara, M.K. and Gomes, S.M.
    [2001] A fully adaptive multiresolution scheme for shock computations. In: Toro, E.F. (Ed.) Godunov Methods: Theory and Applications, Springer, 497–503.
    [Google Scholar]
  20. Khan, S.A., Trangenstein, J.A., Horning, R.D., Holing, K. and Schilling, B.E.R.
    [1995] Application of adaptive mesh-refinement with a new higher-order method in simulation of a North Sea micellar/polymer flood. In: SPE Reservoir Simulation Symposium, 12–15 February, San Antonio, Texas.Society of Petroleum Engineers.
    [Google Scholar]
  21. Klemetsdal, O.S., Berge, R.L., Lie, K.A., Nilsen, H.M. and Moyner, O.
    [2017] Unstructured grid-ding and consistent discretizations for reservoirs with faults and complex wells. In: Proceedings of the SPE Reservoir Simulation Symposium.
    [Google Scholar]
  22. Klöfkorn, R., Kvashchuk, A. and Nolte, M.
    [2017] Comparison of linear reconstructions for second-order finite volume schemes on polyhedral grids.Comput. Geosci., 21(5), 909–919.
    [Google Scholar]
  23. Krogstad, S., Lie, K.A., Møyner, O., Nilsen, H.M., Raynaud, X. and Skaflestad, B.
    [2015] MRST-AD – an open-source framework for rapid prototyping and evaluation of reservoir simulation problems. In: SPE Reservoir Simulation Symposium, 23–25 February, Houston, Texas. 1–25.
    [Google Scholar]
  24. Levy, D., Puppo, G. and Russo, G.
    [2002] A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws.SIAM J. Sci. Comp., 24(2), 480–506.
    [Google Scholar]
  25. Lie, K.A.
    [2016] An Introduction to Reservoir Simulation Using MATLAB: User guide for the Matlab Reservoir Simulation Toolbox (MRST).SINTEF ICT, www.sintef.no/MRST.
    [Google Scholar]
  26. Liu, J., Pope, G.A. and Sepehrnoori, K.
    [1995] A high-resolution, fully implicit method for enhanced oil recovery simulation. In: Proceedings of SPE Reservoir Simulation Symposium, San Antonio, Texas, USA, 12 – 15 February.35–50.
    [Google Scholar]
  27. Liu, Y. and Zhang, Y.T.
    [2013] A robust reconstruction for unstructured WENO schemes.J. Sci. Comp., 54(2–3), 603–621.
    [Google Scholar]
  28. Lohrenz, J., Bray, B.G. and Clark, C.R.
    [1964] Calculating viscosities of reservoir fluids from their compositions.J. Petrol. Tech., 16(10), 1–171.
    [Google Scholar]
  29. Mallison, B., Sword, C., Viard, T., Milliken, W. and Cheng, A.
    [2014] Unstructured cut-cell grids for modeling complex reservoirs.SPE J., 19(02), 340–352.
    [Google Scholar]
  30. Martin, J.J.
    [1979] Cubic equations of state - which?Indust. & Engng. Chem. Fund., 18(2), 81–97.
    [Google Scholar]
  31. Matthäi, S.K., Mezentsev, A.A., Pain, C.C. and Eaton, M.D.
    [2005] A high-order TVD transport method for hybrid meshes on complex geological geometry.Int. J. Numer. Meth. Fluids, 47(10–11), 1181–1187.
    [Google Scholar]
  32. Merland, R., Caumon, G., Lévy, B. and Collon-Drouaillet, P.
    [2014] Voronoi grids conforming to 3D structural features.Comput. Geosci., 18(3–4), 373–383.
    [Google Scholar]
  33. Møyner, O. and Tchelepi, H.A.
    [2018] A mass-conservative sequential implicit multiscale method for isothermal equation of state compositional problems.SPE J. To appear.
    [Google Scholar]
  34. MRST
    [2017b] The MATLAB Reservoir Simulation Toolbox. www.sintef.no/MRST.
  35. Mykkeltvedt, T.S., Raynaud, X. and Lie, K.A.
    [2017] Fully implicit higher-order schemes applied to polymer flooding.Comput. Geosci., 21(5), 1245–1266.
    [Google Scholar]
  36. Oldenburg, C.M. and Pruess, K.
    [2000] Simulation of propagating fronts in geothermal reservoirs with the implicit Leonard total variation diminishing scheme.Geothermics, 29(1), 1–25.
    [Google Scholar]
  37. Palagi, C. and Aziz, K.
    [1994] Use of Voronoi Grid in Reservoir Simulation.SPE Adv. Tech. Ser., 2(2), 69–77.
    [Google Scholar]
  38. Ponting, D.K.
    [1989] Corner point geometry in reservoir simulation. In: ECMORI – 1st European Conference on the Mathematics of Oil Recovery.
    [Google Scholar]
  39. Sheth, S.M. and Younis, R.M.
    [2017] Localized solvers for general full-resolution implicit reservoir simulation. In: SPE Reservoir Simulation Conference, 20–22 February, Montgomery, Texas.
    [Google Scholar]
  40. Shi, J., Hu, C. and Shu, C.W.
    [2002] A technique of treating negative weights in WENO schemes.J. Comput. Phys., 175(1), 108–127.
    [Google Scholar]
  41. Trangenstein, J.A.
    [2009] Numerical solution of hyperbolic partial differential equations.Cambridge University Press, Cambridge.
    [Google Scholar]
  42. van Leer, B.
    [1974] Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme.J. Comput. Phys., 14(4), 361–370.
    [Google Scholar]
  43. Verma, S. and Aziz, K.
    [1997] A control volume scheme for flexible grids in reservoir simulation. In: SPE Reservoir Simulation Symposium, 8–11 June, Dallas, Texas. Society of Petroleum Engineers.
    [Google Scholar]
  44. Wieteska, R., Majewski, J. and Rokicki, J.
    [2005] WENO schemes for finite volume simulation of compressible flows.Math. Model. Anal., 135–140.
    [Google Scholar]
  45. Wolf, W.R. and Azevedo, J.L.F.
    [2007] High-order ENO and WENO schemes for unstructured grids.Int. J. Num. Meth. Fluids, 55(10), 917–943.
    [Google Scholar]
  46. Yee, H., Warming, R. and Harten, A.
    [1985] Implicit total variation diminishing (TVD) schemes for steady-state calculations.J. Comput. Phys., 57(3), 327–360.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201802269
Loading
/content/papers/10.3997/2214-4609.201802269
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error