The UNIS CO2 Lab has evaluated the subsurface near the local coal-fueled power plant in Longyearbyen, Svalbard, Norway as a possible CO2 storage site. Extensive geological and pressure studies, including eight fully cored slim boreholes have proven a nearly 400 m thick shale dominated unit as an efficient cap rock for buoyant fluids. The underlying 300 m thick fractured and under-pressured heterolithic succession is identified as a potential unconventional reservoir The study concludes that the reservoir exhibits injectivity and storage capacity that are sufficient for the relative small volume of the CO2 emitted from the coal power plant.


Article metrics loading...

Loading full text...

Full text loading...



  1. Anell, I., Braathen, A. and Olaussen, S.
    [2014] The Triassic-Early Jurassic of the northern Barents Shelf: a regional understanding of the Longyearbyen CO2 reservoir. Norwegian Journal of Geology94(2–3), 83–98.
    [Google Scholar]
  2. Braathen, A., Bælum, K., Christiansen, H. H., Dahl, T., Eiken, O., Elvebakk, H., Hansen, F., Hanssen, T. H., Jochmann, M., Johansen, T. A., Johnsen, H., Larsen, L., Lie, T., Mertes, J., Mørk, A., Mørk, M. B., Nemec, W. J., Olaussen, S., Oye, V., Rød, K., Titlestad, G. O., Tveranger, J. and Vagle, K.
    [2012] Longyearbyen CO2 lab of Svalbard, Norway—first assessment of the sedimentary succession for CO2 storage. Norwegian Journal of Geology92, 353–376.
    [Google Scholar]
  3. Bælum, K., Johansen, T. A., Johnsen, H., Rød, K., Ruud, B. O. and Braathen, A.
    [2012] Subsurface geometries of the Longyearbyen CO2 lab in Central Spitsbergen, as mapped by reflection seismic data. Norwegian Journal of Geology92, 377–389.
    [Google Scholar]
  4. Grundvåg, S.-A., Marin, D., Kairanov, B., Śliwińska, K., Nøhr-Hansen, H., Escalona, A. and Olaussen, S.
    [2017] The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations. Marine and Petroleum Geology.
    [Google Scholar]
  5. Koevoets, M. J., Hammer, Ø., Olaussen, S., Senger, K. and Smelror, M.
    [2018] Integrating subsurface and outcrop data of the Middle Jurassic to Lower Cretaceous Agardfjellet Formation in central Spitsbergen. Norwegian Journal of Geology98(1), 1–34.
    [Google Scholar]
  6. Mulrooney, M. J., Larsen, L., Stappen, J. V., Cnudde, V., Senger, K., Rismyhr, B., Braathen, A., Olaussen, S., Mørk, M. B. E. and Ogata, K.
    [in press] Fluid flow properties of the Wilhelmøya Subgroup, a potential unconventional CO2 storage unit in central Spitsbergen. Norwegian Journal of Geology.
  7. Ogata, K., Senger, K., Braathen, A., Tveranger, J. and Olaussen, S.
    [2014] Fracture systems and meso-scale structural patterns in the siliciclastic Mesozoic reservoir-caprock succession of the Longyearbyen CO2 Lab project: implications for geologic CO2 sequestration on Central Spitsbergen, Svalbard. Norwegian Journal of Geology94, 121–154.
    [Google Scholar]
  8. Rismyhr, B., Bjærke, T., Olaussen, S., Mulrooney, M. J. and Senger, K.
    [in press] Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup (Upper Triassic—Middle Jurassic) in western central Spitsbergen, Svalbard. Norwegian Journal of Geology.
    [Google Scholar]
  9. Senger, K., Mulrooney, M., Braathen, A., Ogata, K. and Olaussen, S.
    [2016] Integrated Characterization of an Organic-rich Caprock Shale, Svalbard, Arctic Norway. Fifth EAGE Shale Workshop, Catania, Italy, 2–4 May 2016.
    [Google Scholar]
  10. Senger, K., Tveranger, J., Braathen, A., Olaussen, S., Ogata, K. and Larsen, L.
    [2015] CO2 storage resource estimates in unconventional reservoirs: insights from a pilot-sized storage site in Svalbard, Arctic Norway. Environmental Earth Sciences73, 3987–4009.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error