1887
This item has no full text

Abstract

Summary

A re-establishment of the Svelvik Field Laboratory for active CO2 migration monitoring is accompanied with numerical pre-injection site investigations using a poro-elastic description of the glacio-fluvial and marine deposits. The aim is to discriminate pressure and saturation effects of CO2 injection and provide an optimized layout for a multi-physical monitoring campaign. Near surface and appraisal well grain size analysis and appraisal well logging data are used to constrain the elastic properties of a forward model. Results of the previous monitoring campaign and simulation for the planned injection are used to design the layout of the individual monitoring technologies optimized for a range of plume migration scenarios. The monitoring campaign and observation well locations are designed such that the CO2 plume will be captured by cross-well data. The simulated gas saturations and pressures are used to obtain elastic parameters describing the acoustic response. Using worst to best case scenarios being based of rock physical parameters provide resulting sensitivities to particular conformance criteria.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201803004
2018-11-21
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/2018/Fr_CO2_P04.html?itemId=/content/papers/10.3997/2214-4609.201803004&mimeType=html&fmt=ahah

References

  1. Alford, R. M., Kelly, K. R., and Boore, D. M.
    [1974] Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 39(6), 834–842.
    [Google Scholar]
  2. Auken, E., Doetsch, J., Fiandaca, G., Christiansen, A.V., Gazoty, A., Cahill, A. G., Jakobsen, R.
    [2014] Imaging subsurface migration of dissolved CO2 in a shallow aquifer using 3-D time-lapse electrical resistivity tomography. Journal of Applied Geophysics, 101, 31–41.
    [Google Scholar]
  3. Avseth, P., Mukerji, T., and Mavko, G.
    [2010] Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk: Cambridge university press.
    [Google Scholar]
  4. Bakk, A., Girard, J. F., Lindeberg, E., Aker, E., Wertz, F., Buddensiek, M., Barrio, M. and Jones, D.
    [2012] CO2 field lab at svelvik ridge: site suitability. Energy Procedia, 23, 306–312.
    [Google Scholar]
  5. Barrio, M., Bakk, A., Grimstad, A. A., Querendez, E., Jones, D. G., Kuras, O., and Baudin, E.
    [2014] CO 2 Migration Monitoring Methodology in the Shallow Subsurface: Lessons Learned from the CO 2 FIELDLAB Project. Energy Procedia, 51, 65–74.
    [Google Scholar]
  6. Denchik, N., Pezard, P. A., Neyens, D., Lofi, J., Gal, F., Girard, J. F., and Levannier, A.
    [2014] Near-surface CO2 leak detection monitoring from downhole electrical resistivity at the CO2 Field Laboratory, Svelvik Ridge (Norway). International Journal of Greenhouse Gas Control, 28, 275–282.
    [Google Scholar]
  7. Domenico, S. N.
    [1977] Elastic properties of unconsolidated porous sand reservoirs. Geophysics, 42(7), 1339–1368.
    [Google Scholar]
  8. Hu, L., Bayer, P., Alt-Epping, P., Tatomir, A., Sauter, M.
    , and Brauchler, R. [2015] Time-lapse pressure tomography for characterizing CO2 plume evolution in a deep saline aquifer. International Journal of Greenhouse Gas Control, 39, 91–106.
    [Google Scholar]
  9. Jones, D. G., Barkwith, A. K. A. P., Hannis, S., Lister, T. R., Gal, F., Graziani, S., Beaubien, S. E. and Widory, D.
    [2014] Monitoring of near surface gas seepage from a shallow injection experiment at the CO2 Field Lab, Norway. International Journal of Greenhouse Gas Control, 28, 300–317.
    [Google Scholar]
  10. Mavko, G., and Jizba, D.
    [1991] Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics, 56(12), 1940–1949.
    [Google Scholar]
  11. Mavko, G., Mukerji, T., and Dvorkin, J.
    [2009] The rock physics handbook: Tools for seismic analysis of porous media: Cambridge university press.
    [Google Scholar]
  12. Schmidt-Hattenberger, C., Bergmann, P., Bösing, D., Labitzke, T., Möller, M., Schröder, S., Wagner, F. and Schütt, H.
    [2013] Electrical resistivity tomography (ERT) for monitoring of CO2 migration-from tool development to reservoir surveillance at the Ketzin pilot site. Energy Procedia, 37(0), 4268–4275.
    [Google Scholar]
  13. Strom, A., Rippe, D., Schmidt-Hattenberger, C., Barrio, M., Eliasson, P., Jordan, M.
    [2017] Shallow electrical resistivity tomography monitoring at the Svelvik Field Lab, Norway. 76. Jahrestagung der DGG, Potsdam 27.–30. März 2017, Proceedings, abstract # GE.A-074, 289–290.
    [Google Scholar]
  14. Yang, X., Lassen, R. N., Jensen, K. H., Looms, M. C.
    [2015] Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography, International Journal of Greenhouse Gas Control, 42, 534–544.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201803004
Loading
/content/papers/10.3997/2214-4609.201803004
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error