1887

Abstract

Summary

In a Foam-Assisted Water-Alternate Gas injection (FAWAG) process, surfactant is used to reduce the mobility of the gas by creating foam in the reservoir. This process potentially improves the performance of a Water-Alternate Gas injection (WAG) process. The effective dynamic behaviour of FAWAG can be highly complex and often stands in contrast to the behaviour of WAG. This paper presents insights in the effective dynamic behaviour of FAWAG and a comparative study of its sensitivity to uncertainties, reservoir conditions, field design and modelling assumptions, which is important for risk mitigation, opportunity realisation and process optimisation. In this paper the FAWAG process is modelled from the assumption of local equilibrium of foam creation and coalescence using an Implicit Texture model. Sensitivities to uncertainties, pattern design and reservoir screening parameters are studied to identify and analyse the key parameters impacting the FAWAG process as opposed to a WAG process and quantify the reliability of production forecasts with FAWAG. A box reservoir model is used for the study that represents a line drive pattern and can mimic a wide range of different reservoir conditions, injection strategies and pattern designs. A ranking is made of the sensitivity parameters according to their ultimate impact on oil recovery. The results are compared with the literature.

From the sensitivity study it is concluded that FAWAG is mostly sensitive to permeability and well-spacing because of the relatively low throughput rate, while in contrast WAG is mostly sensitive to reservoir heterogeneity and oil viscosity as the process requires high displacement stability. In addition, FAWAG requires high throughput rate or project duration to overcome high heterogeneity and oil viscosity in the long run. It shows that the optimal conditions for a successful FAWAG are high permeability, small well-spacing, high layer connectivity and favourable conditions for injectivity. Furthermore, FAWAG can still be expected to perform well in a reservoir with high heterogeneity and reasonably high oil viscosity, which could turn out to be detrimental conditions for iWAG. Finally, a successful FAWAG project requires optimal conditions for foam generation in the reservoir, which means foam strong enough to improve mobility control, yet not too strong to impair injectivity. However, the optimal conditions for foam at field scale often prove to be highly uncertain in practice and should be determined from field pilots or injectivity tests.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201900106
2019-04-08
2024-04-19
Loading full text...

Full text loading...

References

  1. Abbaszadeh, M., Varavei, A., Rodriguez de la Garza, F., Villavicencio Pino, A. E., Lopez Salinas, J. L., Puerto, M. C., Hirasaki, G. J. and Miller, C. A.
    [2018] Methodology for the Development of Laboratory-Based Comprehensive Foam Model for Use in the Reservoir Simulation of Enhanced Oil Recovery.SPE Res. Eval. Eng., 21(2), 344–363.
    [Google Scholar]
  2. Al Ayesh, A. H., Salazar, R., Farajzadeh, R., Vincent-Bonnieu, S. and Rossen, W. R.
    [2017] Foam Diversion in Heterogeneous Reservoirs: Effects of Permeability and Injection Method.SPE J, 22(5), 1–14.
    [Google Scholar]
  3. Bertin, H. J., Apaydin, O. G., Castanier, L. M. and Kovscek, A. R.
    [1999] Foam Flow in Heterogeneous Porous Media: Effect of Crossflow.SPE J., 4(2), 255–264.
    [Google Scholar]
  4. Bhatt, A. S., Sakaria, P. L., Vasudevan, M., Pawar, R. R., Sudheesh, N., Bajaj, H. C. and Mody, H. M.
    [2012] Adsorption of an Anionic Dye from Aqueous Medium by Organoclays: Equilibrium Modeling, Kinetic and Thermodynamic Exploration.RSC Adv, 2(23), 8663–8671.
    [Google Scholar]
  5. Boeije, C. S. and Rossen, W. R.
    [2013] Fitting Foam Simulation Model Parameters to Data.Proceedings of the 17th European Symposiumon improved Oil Recovery, St. Petersburg, Russia
    [Google Scholar]
  6. [2015] Fitting Foam-Simulation-Model Parameters to Data: I. Coinjection of Gas and Liquid.SPE Res. Eval. Eng., 18(2), 264–272.
    [Google Scholar]
  7. Cheng, L., Reme, A. B., Shan, D., Coombe, D. A. and Rossen, W. R.
    [2000] Simulating Foam Processes at High and Low Foam Qualities.Proceedings of the 2000 SPE/DOE Improved Oil Recovery, Tulsa, Oklahoma, USA, SPE 59287.
    [Google Scholar]
  8. Computer Modeling Group
    [2006] STARS User's Guide.CMG Ltd., Calgary, Alberta, Canada.
    [Google Scholar]
  9. Farajzadeh, R., Adrianov, A., Krastev, R., Hirasaki, G. J. and Rossen, W. R.
    [2012] Foam-Oil Interaction in Porous Media: Implications for Foam Assisted Enhanced Oil Recovery.Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, SPE 154197.
    [Google Scholar]
  10. Farajzadeh, R., Lotfollahi, M., Eftekhari, A. A., Rossen, W. R. and Hirasaki, G. J. H.
    [2015] Effect of Permeability on Implicit-Texture Foam Model Parameters and the Limiting Capillary Pressure.Energy Fuels, 29(5), 3011–3018.
    [Google Scholar]
  11. Fischer, A. W., Foulser, R. W. S. and Goodyear, S. G.
    [1990] Mathematical Modeling of Foam Flooding.Proceedings of the SPE/DOE Seventh Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, USA, SPE/DOE 20195.
    [Google Scholar]
  12. Gong, J., Vincent-Bonnieu, S., Kamarul Bahrim, R. Z., Groenenboom, J., Farajzadeh, R. and Rossen, W. R.
    [2018] Modelling of Liquid Injectivity in Surfactant-Alternating-Gas Foam Enhanced Oil Recovery.Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, SPE 190435.
    [Google Scholar]
  13. Groenenboom, J., Kechut, N., Mar-Or, A. and Bonnieu, S.
    [2017] Foam-Assisted WAG: Injection Strategies to Optimize Performance.Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Bali, Indonesia, SPE 186991.
    [Google Scholar]
  14. Hadjiiski, A., Tcholakova, S., Denkov, N. D., Durbut, P., Broze, G. and Mehreteab, A.
    [2001] Effect of Oily Additives on Foamability and Foam Stability. 2. Entry Barriers.Langmuir, 17(22), 7011–7021.
    [Google Scholar]
  15. Hanssen, J. E., Surguchev, L. M. and Svorstøl, I.
    [1994] SAG Injection in a North Sea Stratified Reservoir: Flow Experiment and Simulation.Proceedings of the European Petroleum Conference, London, U.K., SPE 28847.
    [Google Scholar]
  16. Islam, M. R. and Farouq Ali, S. M.
    [1990] Numerical Simulation of Foam Flow in Porous Media.J. Canadian. Pet. Tech., 29(4), 47–51.
    [Google Scholar]
  17. Jamshidnezhad, M., Chen, C., Kool, P. and Rossen, W. R.
    [2008] Well Stimulation and Gravity Segregation in Gas Improved Oil Recovery.Proceedings of the 2008 SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, SPE 112375.
    [Google Scholar]
  18. Jones, S. A., Laskaris, G., Vincent-Bonnieu, S., Farajzadeh, R. and Rossen, W. R.
    [2016] Surfactant Effect on Foam: From Coreflood Experiments to Implicit-Texture Foam-Model Parameters. J. Ind Eng. Chem., 37, 268–276.
    [Google Scholar]
  19. Kahrobaei, S., Vincent-Bonnieu, S. and Farajzadeh, R.
    [2017] Experimental Study of Hysteresis Behavior of Foam Generation in Porous Media.Scientific Reports, 7(8986), 1–9.
    [Google Scholar]
  20. Kapetas, L., Vincent Bonnieu, S., Farajzadeh, R., Eftekhari, A. A., Mohd-Shafian, S. R., Kamarul Bahrim, R. Z. and Rossen, W. R.
    [2015] Effect of Permeability on Foam-Model Parameters - An Integrated Approach from Coreflood Experiments through to Foam Diversion Calculations.18th European Symposium on Improved Oil Recovery, EAGE, Dresden, Germany.
    [Google Scholar]
  21. Kapetas, L. Vincent Bonnieu, S., Farajzadeh, R., Eftekhari, A. A., Mohd-Shafian, S. R., Kamarul Bahrim, R. Z. and Rossen, W. R.
    [2017] Effect on Permeability on Foam-Model Parameters: An Integrated Approach from Core-Flood Experiments through to Foam Diversion Calculations.Colloids and Surfaces A: Physicochemical and Engineering Aspects.530, 172–180.
    [Google Scholar]
  22. Kloet, M. B., Renkema, W. J. and Rossen, W. R.
    [2009] Optimal Design Criteria for SAG Foam Processes in Heterogeneous Reservoirs.Proceedings of the 2009 SPE EUROPEC/EAGE Annual Conference and Exhibition, Amsterdam, The Netherlands, SPE 121581.
    [Google Scholar]
  23. Koczo, K., Lobo, L. A. and Wasan, D. T.
    [1992] Effect of Oil on Foam Stability: Aqueous Foams Stabilized by Emulsions.J. Colloid Interface Sci., 150(2), 492–506.
    [Google Scholar]
  24. Kovscek, A. R., Patzek, T. W. & Radke, C. J.
    [1994]. Mechanistic Prediction of Foam Displacement in Multidimensions: A Population Balance Approach. Proceedings of the SPE/DOE Ninth Symposium on lmproved Oil Recovery, Tulsa, Oklahoma, U.S.A., SPE/DOE 27789.
    [Google Scholar]
  25. Law, D. H.-S., Yang, Z.-M. and Stone, T. W.
    [1988] Foam Transport Modeling.Proceedings of the Fourth UNITAR/UNDP International Conference on Heavy Crude & Tar Sands, 4, 415–429.
    [Google Scholar]
  26. Leeftink, T. N., Latooij, C. A. and Rossen, W. R.
    [2015] Injectivity Errors in Simulation of Foam EOR.J. Pet. Sci. Eng., 126, 26–34.
    [Google Scholar]
  27. Li, B., Hirasaki, G. J. andMiller, C. A.
    [2006] Upscaling of Foam Mobility Control To Three Dimensions.Proceedings of the 2006 SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, U.S.A., SPE 99719.
    [Google Scholar]
  28. Li, R. F., Yan, W., Liu, S., Hirasaki, G. J. and Miller, C. A.
    [2008] Foam Mobility Control for Surfactant EOR.Proceedings of the 2008 SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, U.S.A., SPE 113910.
    [Google Scholar]
  29. Lotfollahi, M., Farajzadeh, R., Delshad, M., Varavei, M. and Rossen, W. R.
    [2016] Comparison of Implicit-Texture and Population-Balance Foam Models.Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, SPE 179808.
    [Google Scholar]
  30. Ma, K., Lopez-Salinas, L., Puerto, M. C., Miller, C. A., Biswal, S. L. and Hirasaki, G. J.
    [2013] Estimation of Parameters for the Simulation of Foam Flow through Porous Media. Part 1: The Dry-Out Effect.Energy & Fuels, 27(5), 2363–2375.
    [Google Scholar]
  31. Ma, K., Ren, G., Mateen, K., Morel, D. and Cordelier, P.
    [2015] Modeling Techniques for Foam Flow in Porous Media.SPE J, 20(3), 453–470.
    [Google Scholar]
  32. Mannhardt, K., Novosad, J. J. and Schramm, L. L.
    [1998] Foam/Oil Interactions at Reservoir Conditions.Proceedings of the 1998 SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, SPE 39681.
    [Google Scholar]
  33. [2000] Comparative Evaluation of Foam Stability to Oil.SPE Res. Eval. Eng., 3(1), 23–34.
    [Google Scholar]
  34. Mohammadi, S. S., Coombe, D. A. and Stevenson, V. M.
    [1993] Test of Steam-Foam Process for Mobility Control in South Casper Creek Reservoir.JCPT, 32(10), 49–54.
    [Google Scholar]
  35. Namdar Zanganeh, M.
    [2011] Simulation and Optimization of Foam EOR Processes. TU Delft, Delft, PhD Thesis.
    [Google Scholar]
  36. Namdar Zanganeh, M., Kam, S. I., LaForce, T. C. and Rossen, W. R.
    [2011] The Method of Characteristics Applied to Oil Displacement by Foam.SPE J, 16(1), 8–23.
    [Google Scholar]
  37. Namdar Zanganeh, M., Kraaijevanger, J. F. B. M., Buurman, H. W., Jansen, J. D. and Rossen, W. R.
    [2014] Challenges in Adjoint-Based Optimization of a foam EOR Process.Comput Geosci, 18(3–4), 563–577.
    [Google Scholar]
  38. Namdar Zanganeh, M. and Rossen, W. R.
    [2013] Optimization of Foam Enhanced Oil Recovery: Balanced Sweep and Injectivity.SPE Res Eval & Eng, 16, 51–59.
    [Google Scholar]
  39. Nguyen, Q. P., Currie, P. K. and Zitha, P. L. J.
    [2005] Effect of Cross-Flow on Foam-Induced Diversion in Layered Formations.SPE J., 10(1), 54–65.
    [Google Scholar]
  40. Nguyen, Q. P., Zitha, P. L. J., Currie, P. K. and Rossen, W. R.
    [2005] CT Study of Liquid Diversion with Foam.Proceedings of the 2005 SPE Production and Operations Symposium, Oklahoma City, OK, U.S.A., SPE 93949.
    [Google Scholar]
  41. Rossen, W. R. and Boeije, C. S.
    [2013] Fitting Foam Simulation Parameters for SAG Foam Applications.Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, SPE 165282.
    [Google Scholar]
  42. Rossen, W. R. and Lu, Q.
    [1997] Effect of Capillary Crossflow on Foam Improved Oil Recovery.Proceedings of the 1997 SPE Western Regional Meeting, Long Beach, California, U.S.A., SPE 38319.
    [Google Scholar]
  43. Rossen, W. R., Zeilinger, S. C., Shi, J.-X. and Lim, M. T.
    [1999] Simplified Mechanistic Simulation of Foam Processes in Porous Media.SPE J, 4(3), 279–287.
    [Google Scholar]
  44. Schramm, L. L. and Novosad, J. J.
    [1992] The Destabilization of Foams for Improved Oil Recovery by Crude Oils: Effect of the Nature of the Oil.J. Pet. Sci. Eng., 7(1–2), 77–90.
    [Google Scholar]
  45. Skauge, A., Aarra, M. G., Surguchev, L., Martinsen, H. A. and Rasmussen, L.
    [2002] Foam Assisted WAG: Experience from the Snorre Field.Proceedings of the SPE-DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, U.S.A., SPE 75157.
    [Google Scholar]
  46. Spirov, P., Rudyk, S. N. and Khan, A. A.
    [2012] Foam Assisted WAG, Snorre Revisit with New Foam Screening Model.Proceedings of the North Africa Technical Conference and Exhibition, Cairo, Egypt, SPE 150829.
    [Google Scholar]
  47. Surguchev, L. M. and Hanssen, L. E.
    [1996] Foam Application in North Sea Reservoirs, I: Design and Technical Support of Field Trials.Proceedings of the 1996 SPE/DOE Tenth Symposium on Improved Oil Recovery, Tulsa, OK, U.S.A, SPE/DOE 35371.
    [Google Scholar]
  48. Surguchev, L. M., Søgnesand, S., Skauge, A. and Aarra, M. G.
    [1995] Modelling and History Matching of Foam Field Pilot, Oseberg Field.Proceedings of the 8th. European IOR - Symposium, Vienna, Austria.
    [Google Scholar]
  49. van der Meer, J. M., Kraaijevanger, J. F. B. M., Möller, M. and Jansen, J. D.
    [2016] Temporal Oscillations in the Simulation of Foam Enhanced Oil Recovery.Proceedings of the 15th European Conference on the Mathematics of Oil Recovery, Amsterdam, The Netherlands, ECMOR XV–15th European Conference on the Mathematics of Oil Recovery.
    [Google Scholar]
  50. Vassenden, F. and Holt, T.
    [1998] Experimental Foundation for Relative Permeability Modeling of Foam.Proceedings of the 1998 SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, SPE 39660.
    [Google Scholar]
  51. Vikingstad, A. K., Aarra, M. G. and Skauge, A.
    [2006] Effect of Surfactant Structure on Foam–Oil Interactions: Comparing Fluorinated Surfactant and Alpha Olefin Sulfonate in Static Foam Tests.Colloids and Surfaces A: Physicochem. Eng. Aspects, 279, 105–112.
    [Google Scholar]
  52. Vikingstad, A. K., Skauge, A., Høiland, H. and Aarra, M. G.
    [2005] Foam–Oil Interactions Analyzed by Static Foam Tests.Colloids and Surfaces A: Physicochem. Eng. Aspects, 260, 189–198.
    [Google Scholar]
  53. Zhang, Y., Yue, X., Dong, J. and Yu, L.
    [2000] New and Effective Foam Flooding to Recover Oil in Heterogeneous Reservoir.Proceedings of the 2000 SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, U.S.A., SPE 59367.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201900106
Loading
/content/papers/10.3997/2214-4609.201900106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error