We are planning a tomographic survey to characterize an unstable rock mass that has been monitored with a microseismic sensor network since 2013. An automatic algorithm is used to classify the events filtering noise and interferences. To interpret the events for monitoring the evolution of the fracture system within the rock mass, we are now developing a hypocenter location procedure. The algorithm needs a 3D velocity model. In this work, we discuss the preliminary source tests performed on site to select a portable source suitable for the harsh environment and the size of the monitored area. The small database generated with these tests has been also used to perform a location exercise using a constant velocity. The results are encouraging but it is clear that a 3D velocity model is required to improve the accuracy. Finally, the database has been used to perform a tomographic exercise to extract a preliminary 3D velocity model. The result seems meaningful and shows that despite the difficulties in deploying and moving sources and sensors (a 24-geophone spread will be combined with the microseismic network to increase the ray coverage) in the harsh environment of the rock cliff, the tomographic survey is promising.


Article metrics loading...

Loading full text...

Full text loading...


  1. Arosio, D., Boccolari, M., Longoni, L., Papini, M., Zanzi, L.
    [2017a] Classification of Microseismic Activity in an Unstable Rock Cliff. In: Advancing Culture of Living with Landslides, WLF 2017, Mikos, M., Arbanas, Ž., Yin, Y., Sassa, K., Eds., Springer, Cham, Vol. 3, 123–130, doi: doi.org/10.1007/978‑3‑319‑53487‑9_13.
    https://doi.org/doi.org/10.1007/978-3-319-53487-9_13 [Google Scholar]
  2. Arosio, D., Corsini, A., Giusti, R., Zanzi, L.
    [2017b] Seismic Noise Measurements on Unstable Rock Blocks: The Case of Bismantova Rock Cliff. In: Advancing Culture of Living with Landslides, WLF 2017, Mikos, M., Arbanas, Ž., Yin, Y., Sassa, K., Eds., Springer, Cham, Vol. 3, 325–332, doi: doi.org/10.1007/978‑3‑319‑53487‑9_37.
    https://doi.org/doi.org/10.1007/978-3-319-53487-9_37 [Google Scholar]
  3. Arosio, D., Longoni, L., Mazza, F., Papini, M., Zanzi, L.
    [2013] Freeze-thaw cycle and rockfall monitoring. In: Landslide Science and Practice: Early warning, instrumentation and monitoring, Margottini, C., Canuti, P., Sassa, K., Eds., Springer, Berlin, Vol. 2, 385–390, doi: 10.1007/978‑3‑642‑31445‑2.
    https://doi.org/10.1007/978-3-642-31445-2 [Google Scholar]
  4. Arosio, D., Longoni, L., Papini, M., Boccolari, M., Zanzi, L.
    [2018] Analysis of microseismic signals collected on an unstable rock face in the Italian Prealps. Geophysical Journal International, 213, 475–488, doi: 10.1093/gji/ggy010.
    https://doi.org/10.1093/gji/ggy010 [Google Scholar]
  5. Arosio, D., Longoni, L., Papini, M., Zanzi, L.
    [2015a] Analysis of microseismic activity within unstable rock slopes. In: Modern Technologies for Landslide Monitoring and Prediction, Scaioni, M., Ed., Springer Natural Hazards, Springer, Berlin, 141–154, doi: 10.1007/978‑3‑662‑45931‑7.
    https://doi.org/10.1007/978-3-662-45931-7 [Google Scholar]
  6. Arosio, D., Munda, S., Tresoldi, G., Papini, M., Longoni, L. and ZanziL.
    [2017c] A customized resistivity system for monitoring saturation and seepage in earthen levees: installation and validation. Open Geosciences, 9, 457–467, doi: 10.1515/geo-2017-0035.
    [Google Scholar]
  7. Arosio, D., Zanzi, L., Longoni, L., Papini, M.
    [2015b] Microseismic monitoring of an unstable rock face — Preliminary signal classification. Near Surface Geoscience 2015, Torino, doi: 10.3997/2214‑4609.201413667.
    https://doi.org/10.3997/2214-4609.201413667 [Google Scholar]
  8. Colombero, C.
    [2017] Microseismic strategies for characterization and monitoring of an unstable rock mass. PhD Thesis, Univ. of Turin.
    [Google Scholar]
  9. Lomax, A., Michelini, A., Curtis, A.
    [2009] Earthquake Location, Direct, Global-Search Methods. In: Encyclopedia of Complexity and System Science, Part 5, Springer, New York, 2449–2473, doi: 10.1007/978‑0‑387‑30440‑3.
    https://doi.org/10.1007/978-0-387-30440-3 [Google Scholar]
  10. Scaioni, M., Crippa, J., Longoni, L., Papini, M., and Zanzi, L.
    [2017] Image-Based Reconstruction and Analysis of Dynamic Scenes in a Landslide Simulation Facility. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., Vol. IV, Part 5/W1, 63–70, doi: 10.5194/isprs‑annals‑IV‑5‑W1‑63‑2017.
    https://doi.org/10.5194/isprs-annals-IV-5-W1-63-2017 [Google Scholar]
  11. Spillmann, T., Maurer, H., Green, A.G., Heincke, B., Willenberg, H., Husen, S.
    [2007] Microseismic investigation of an unstable mountain slope in the Swiss Alps. J. Geophys. Res., 112 (B7), B07301.
    [Google Scholar]
  12. Taruselli, M., Arosio, D., Longoni, L., Papini, M., Corsini, A., Zanzi, L.
    [2018] Rock stability as detected by seismic noise recordings: three case studies. Near Surface Geoscience 2018, Porto, We 24B 11, doi:10.3997/2214‑4609.201802611.
    https://doi.org/10.3997/2214-4609.201802611 [Google Scholar]
  13. Tresoldi, G., Arosio, D., Hojat, A., Longoni, L., Papini, M. and Zanzi, L.
    [2018] Tech-Levee-Watch: experimenting an integrated geophysical system for stability assessment of levees. Rendiconti Online della Società Geologica Italiana, 46, 38–43, doi: 10.3301/ROL.2018.49.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error