1887

Abstract

Summary

This study presents the analysis of the ambient seismic noise collected on a small limestone block that was forced to fail during a field test. We compare different spectral analysis techniques with the objective of investigating their performances and suitability to monitor the rock block stability over time. Ambient vibration datasets were first pre-processed before the spectral analysis was carried out. The outcomes clearly show a variation in spectral content when approaching rock ultimate failure, especially when considering spectrograms and horizontal-to-vertical spectral ratio curves. This agrees with the assumption that the collapse of an unstable rock is preceded by a drop of its natural frequency due to the deterioration of rock bridges. The obtained results confirm the potential of ambient noise spectral analysis as a reliable tool to improve our capabilities of rock failure forecasting.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201900451
2019-04-24
2020-02-18
Loading full text...

Full text loading...

References

  1. Arosio, D., Corsini, A., Giusti, R., Zanzi, L.
    [2017] Seismic Noise Measurements on Unstable Rock Blocks: The Case of Bismantova Rock Cliff. In: Advancing Culture of Living with Landslides, WLF 2017, Mikos, M., Arbanas, Z., Yin, Y., Sassa, K., Eds., Springer, Cham, Vol.3, 325–332, doi: doi.org/10.1007/978‑3‑319‑53487‑9_37.
    https://doi.org/doi.org/10.1007/978-3-319-53487-9_37 [Google Scholar]
  2. Arosio, D., Longoni, L., Papini, M., Boccolari, M., Zanzi, L.
    [2018] Analysis of microseismic signals collected on an unstable rock face in the Italian Prealps. Geophys J Int, 213 (1), 475–488, doi: 10.1093/gji/ggy010.
    https://doi.org/10.1093/gji/ggy010 [Google Scholar]
  3. Arosio, D., Longoni, L., Papini, M., Zanzi, L.
    [2015a] Analysis of microseismic activity within unstable rock slopes. In: Modern Technologies for Landslide Monitoring and Prediction, Scaioni, M., Ed., Springer Natural Hazards, Springer, Berlin, 141–154, doi: 10.1007/978‑3‑662‑45931‑7.
    https://doi.org/10.1007/978-3-662-45931-7 [Google Scholar]
  4. Arosio, D., Zanzi, L., Longoni, L., Papini, M.
    [2015b] Microseismic monitoring of an unstable rock face — Preliminary signal classification. Near Surface Geoscience 2015, Torino, doi: 10.3997/2214‑4609.201413667.
    https://doi.org/10.3997/2214-4609.201413667 [Google Scholar]
  5. Bottelin, P., Lévy, C., Baillet, L., Jongmans, D., Guéguen, P.
    [2013] Modal and thermal analysis of Les Arches unstable rock column (Vercors massif, French Alps). Geophys J Int, 194 (2), 849–858.
    [Google Scholar]
  6. Burjánek, J., Moore, J.R., Yugsi Molina, F.X., Fäh, D.
    [2012] Instrumental evidence of normal mode rock slope vibration. Geophys J Int, 188 (2), 559–569, doi: 10.1111/j.1365‑246X.2011.05272.x.
    https://doi.org/10.1111/j.1365-246X.2011.05272.x [Google Scholar]
  7. Larose, E., Carriére, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., Gimbert, F., Massey, C.
    [2015] Environmental seismology: What can we learn on earth surface processes with ambient noise?J Appl Geophys, 116, 62–74.
    [Google Scholar]
  8. Mainsant, G., Larose, E., Brönnimann, C., Jongmans, D., Michoud, C., Jaboyedoff, M.
    [2012] Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J Geophys Res, 117, F01030, doi:10.1029/2011JF002159.
    https://doi.org/10.1029/2011JF002159 [Google Scholar]
  9. Nakamura, Y.A.
    [1989] Method for dynamic characteristics estimation of subsurface using microtremors on the ground surface. Q Rep Railway Tech Res Inst30:25–30
    [Google Scholar]
  10. Spillmann, T., Maurer, H., Green, A.G., Heincke, B., Willenberg, H., Husen, S.
    [2007] Microseismic investigation of an unstable mountain slope in the Swiss Alps. J Geophys Res, 112 (B7), B07301.
    [Google Scholar]
  11. Starr, A.M., Moore, J.R., Thorne, M.S.
    [2015] Ambient resonance of Mesa Arch, Canyonlands National Park, Utah. Geophys Res Lett, 42, 6696–6702, doi: 10.1002/2015GL064917.
    https://doi.org/10.1002/2015GL064917 [Google Scholar]
  12. Taruselli, M., Arosio, D., Longoni, L., Papini, M., Corsini, A., Zanzi, L.
    [2018] Rock stability as detected by seismic noise recordings: three case studies. Near Surface Geoscience 2018, Porto, We 24B 11, doi:10.3997/2214‑4609.201802611.
    https://doi.org/10.3997/2214-4609.201802611 [Google Scholar]
  13. Valentin, J., Capron, A., Jongmans, D., Baillet, L., Bottelin, P., Donze, F., Larose, E., Mangeney, A.
    [2017] The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling. Geophys J Int, 208 (2), 1058–1076.
    [Google Scholar]
  14. Voisin, C., Garambois, S., Massey, C., Brossier, R.
    [2016] Seismic noise monitoring of the water table in a deep-seated, slow-moving landslide. Interpretation, 4 (3), SJ67–SJ764.
    [Google Scholar]
  15. Wapenaar, K.
    [2004] Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys. Rev. Lett., 93 (25), 254301-1-4.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201900451
Loading
/content/papers/10.3997/2214-4609.201900451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error