1887

Abstract

Summary

This study provides rigorous quantification of uncertainties associated with fracture permeability estimation obtained through stochastic inverse modeling of mud losses recorded while drilling. Fracture characterization is performed in terms of fracture width estimation and is grounded on a stochastic inverse modeling technique. Implementation of the latter rests on a well-defined set of parameters, including drilling fluid, rheological properties, flow rates, pore and dynamic drilling fluid pressure, wellbore geometry. These quantities are generally affected by diverse sources of uncertainty. Drilling mud is modeled as a Herschel–Bulkley fluid. Open fractures are treated as horizontal planes intersecting the wellbore and a simple analytical solution is employed to express mud flow advancement in the fracture as a function of drilling fluid properties and operational conditions. A modern global sensitivity analysis approach is employed to quantify the way uncertain model parameters affect fracture aperture (hence permeability) and extent. Uncertainty propagation from input parameters to model outputs is investigated and quantified through a workflow implemented within a Monte Carlo framework. It is then employed in the context of stochastic inverse modeling of field cases to evaluate posterior probability densities of fracture aperture and to simulate drilling fluid invasion in fractures in quasi-real time during drilling.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201901624
2019-06-03
2020-11-24
Loading full text...

Full text loading...

References

  1. Al-Adwani, T., Singh, S., Khan, B., Dashti, J., Ferroni, G., and Martocchia, A
    . [2012] Real Time Advanced Surface Flow Analysis for Detection of Open Fractures. SPE Europec/EAGE Annual Conference, Copenhagen, Denmark.
    [Google Scholar]
  2. Dell'Oca, A., Riva, M., and Guadagnini, A
    . [2017] Moment-based metrics for global sensitivity analysis of hydrological systems. Hydrol Earth Syst Sci, 21, 1–16.
    [Google Scholar]
  3. Kullback, S
    . [1959] Information Theory and Statistics. John Wiley, New York.
    [Google Scholar]
  4. Majidi, R., Miska, S.Z., Ahmed, R., Yu, M., and Thompson, L.G.
    [2010] Radial flow of yield-power-law fluids: Numerical analysis, experimental study and the application for drilling fluid losses in fractured formations. J Petrol Sci Eng, 70, 334–343.
    [Google Scholar]
  5. Mara, T.A., Fajraoui, N., Guadagnini, A., and Younes, A
    . [2017] Dimensionality reduction for efficient Bayesian estimation of groundwater flow in strongly heterogeneous aquifers. Stoch Environ Res Risk Assess, 31, 2313–2326.
    [Google Scholar]
  6. Russo, E., Colombo, I., and Nicolotti, I
    . [2018] Uncertainty quantification of fracture characterization in naturally fractured reservoirs. FRONTUQ18 Pavia, Italy.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201901624
Loading
/content/papers/10.3997/2214-4609.201901624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error