1887

Abstract

Summary

Electrical resistivity tomography and cone penetration test were carried out on the slope of the M–7 Volga highway. The main goal of the research is to localize areas of increased landslide hazard. Electrical resistivity and the mechanical properties of soils depend on their moisture content, lithological composition and porosity. This made it possible to determine the correlation links between the electrical resistivity and the mechanical parameters of the soil, to predict the deformative and strength characteristics of the soil. Soils with abnormally low resistivity have low values of drag under the cone and friction of the side surface of the probe. They correspond to areas of potential landslide formation.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201901701
2019-04-16
2024-04-19
Loading full text...

Full text loading...

References

  1. ГОСТ 19912-2012. Грунты. Методы полевых испытаний статическим и динамическим зондированием. – 2012.
    [Google Scholar]
  2. ПетровН. Ф. и др.
    Оползни на автомобильной дороге М–7 «Волга» (Москва-Казань, 583–584 км) в правобережье Р. Сура в Чувашской Республике //Современные проблемы науки и образования. – 2012. – №. 6. – С. 625–625.
    [Google Scholar]
  3. СП 11–105–97. «Инженерно-геологические изыскания для строительства. Часть I. «Общие правила производства работ» / Госстрой России. – М.: Производственный и научно- исследовательский институт по инженерным изысканиям в строительстве (ПНИИИС) Госстроя России, 1997.
    [Google Scholar]
  4. ТарховА. Г.
    (ред.). Электроразведка: Справочник геофизика. – Недра, 1980.
  5. DahlinT., SchälinD., TornborgJ.
    Mapping of quick clay by ERT and CPT-R in the Göta Älv river valley //Landslides in Sensitive Clays. – Springer, Dordrecht, 2014. – С. 217–228.
    [Google Scholar]
  6. DonohueS. et al.
    Multi‐method geophysical mapping of quick clay //Near Surface Geophysics. – 2012. – Т. 10. – №. 3. – С. 207–219.
    [Google Scholar]
  7. LavalleL. V. A., BortolozoC. A., PachecoT. C. K. F.
    Evaluation methodology for obtaining geotechnical parameters using electrical resistivity //First Break. – 2018. – Т. 36. – №. 8. – С. 55- 59.
    [Google Scholar]
  8. MalehmirA. et al.
    Geophysical assessment and geotechnical investigation of quick-clay landslides– a Swedish case study //Near Surface Geophysics. – 2013. – Т. 11. – №. 3. – С. 341–350.
    [Google Scholar]
  9. ShanC. et al.
    Integrated 2D modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden //Geophysics. – 2014. – Т. 79. – №. 4. – С. EN61-EN75.
    [Google Scholar]
  10. SolbergI. L. et al.
    Geophysical and geotechnical studies of geology and sediment properties at a quick-clay landslide site at Esp, Trondheim, Norway //Engineering Geology. – 2016. – Т. 208. – С. 214–230.
    [Google Scholar]
  11. SulistijoB., AnwarA. S. K.
    Integrated site investigation method to analyze subsurface condition for the belt conveyor //Procedia Earth and Planetary Science. – 2013. – Т. 6. – С. 369–376.
    [Google Scholar]
  12. GOST
    19912–2012. [2012] Grunty. Metody polevyh ispytanij staticheskim i dinamicheskim zondirovaniem. MNTKS.
    [Google Scholar]
  13. Petrov, N. F., Pavlov, A. N., Nikonorova, I., YAkovlev, E., & Aleksandrov, A. [2012]. Opolzni na avtomobil'noj doroge M–7 «Volga» (Moskva-Kazan', 583–584 km) v pravoberezh'e R. Sura v Chuvashskoj Respublike. Sovremennye problemy nauki i obrazovaniya, (6), 625–625.
    [Google Scholar]
  14. SP 11–105–97. [1997] «Inzhenerno-geologicheskie izyskaniya dlya stroitel'stva. CHast' I. «Obshchie pravila proizvodstva rabot». Gosstroj Rossii. Proizvodstvennyj i nauchno-issledovatel'skij institut po inzhenernym izyskaniyam v stroitel'stve (PNIIIS) Gosstroya Rossii.
    [Google Scholar]
  15. Tarhov, A. G.
    (Ed.). [1980]. Elektrorazvedka: Spravochnik geofizika.
    [Google Scholar]
  16. Dahlin, T., Schälin, D., & Tornborg, J.
    [2014]. Mapping of quick clay by ERT and CPT-R in the Göta Älv river valley. In Landslides in Sensitive Clays (pp. 217–228). Springer, Dordrecht.
    [Google Scholar]
  17. Donohue, S., Long, M., O‐Connor, P., Eide Helle, T., Aspmo Pfaffhuber, A., & Rømoen, M. (2012). Multi‐method geophysical mapping of quick clay. Near Surface Geophysics, 10(3), 207–219.
    [Google Scholar]
  18. Lavalle, L. V. A., Bortolozo, C. A., & Pacheco, T. C. K. F.
    [2018]. Evaluation methodology for obtaining geotechnical parameters using electrical resistivity. First Break, 36(8), 55–59.
    [Google Scholar]
  19. Malehmir, A., Bastani, M., Krawczyk, C. M., Gurk, M., Ismail, N., Polom, U., & Persson, L. [2013]. Geophysical assessment and geotechnical investigation of quick-clay landslides–a Swedish case study. Near Surface Geophysics, 11(3), 341–350.
    [Google Scholar]
  20. Shan, C., Bastani, M., Malehmir, A., Persson, L., & Engdahl, M. [2014]. Integrated 2D modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden. Geophysics, 79(4), EN61-EN75.
    [Google Scholar]
  21. Solberg, I. L., Long, M., Baranwal, V. C., Gylland, A. S., & Rønning, J. S. [2016]. Geophysical and geotechnical studies of geology and sediment properties at a quick-clay landslide site at Esp, Trondheim, Norway. Engineering Geology, 208, 214–230.
    [Google Scholar]
  22. Sulistijo, B., & Anwar, A. K.
    [2013]. Integrated site investigation method to analyze subsurface condition for the belt conveyor. Procedia Earth and Planetary Science, 6, 369–376.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201901701
Loading
/content/papers/10.3997/2214-4609.201901701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error