An essential part of understanding seals includes studying the physical and mechanical behaviors of seals upon chemical interaction with fluids in the subsurface and, specifically, how chemical cementation and fluids being potentially aggressive impact the mechanical behavior of the bonded fabric. In this paper we focus on the chemistry of the cementation process of volcanic ash, the resulting formation of fibrous minerals and their impact on strength, and the role of CO2 in undermining such a cementation process. Intriguingly, volcanic ash and many of the fluids present in the subsurface (i.e., lime, alkalis, and sulfur) have been used to produce ancient mortars and still used in modern cementitious binders. This intertwining of the cementation of ash-based mortars and ash beds in the subsurface is an opportunity for cross-fertilizing knowledge across the Geosciences and Engineering, which is crucial to understand how fluid chemistry controls or undermines the cementation and strength of seals in the subsurface.


Article metrics loading...

Loading full text...

Full text loading...


  1. Al Bakri, A. M. M., Kamarudin, H., Binhussain, M., Nizar, I. K., Rafiza, A. R., and Zarina, Y.
    [2013] Comparison of geopolymer fly ash and ordinary portland cement to the strength of concrete. Adv. Sci. Lett.193592–3595. doi:10.1166/asl.2013.5187
    [Google Scholar]
  2. Ashraf, W.
    [2016] Carbonation of cement-based materials: Challenges and opportunities. Constr. Build. Mater.120, 558–570. doi: 10.1016/j.conbuildmat.2016.05.080
    [Google Scholar]
  3. Bakharev, T.
    [2005] Resistance of geopolymer materials to acid attack, Cem. Concr. Res.35, 658–670. doi:10.1016/j.cemconres.2004.06.005
    [Google Scholar]
  4. Banthia, N., and Sheng, J.
    [1996] Fracture toughness of micro-fiber reinforced cement composites. Cement Concrete Comp. 18, 251–269. doi:10.1016/0958-9465(95)00030-5
    [Google Scholar]
  5. Brandon, C. J., Hohlfelder, R. L., Jackson, M. D., and Oleson, J. P.
    (2014). Building for Eternity. The History and Technology of Roman Concrete Engineering in the Sea. Oxford: Oxbow Books. 11–36
    [Google Scholar]
  6. Calvin, C., Diaz, H. G., Mosse, L., Miller, C., Fisher, K.
    [2015] Evaluating the diagenetic alteration and structural integrity of volcanic ash beds within the Eagle Ford shale, SPE-175961-MS, SPE/CSUR Unconventional Resources Conference held in Calgary, Alberta, Canada. doi:10.2118/175961-MS
    [Google Scholar]
  7. Chang, C.-F., and Chen, J.-W.
    [2005] Strength and elastic modulus of carbonated concrete, ACI Materials Journal102, 5, 315–321.
    [Google Scholar]
  8. Clark, A. C., MacFarlane, J., & Vanorio, T.
    [2018] Permeability evolution of a cemented volcanic ash during carbonation and CO2 depressurization. Journal of Geophysical Research: Solid Earth, 123. https://doi.org/10.1029/ 2018JB015810
    [Google Scholar]
  9. Delgado, F., Pritchard, M., Basualto, D., Lazo, J., Cordova, L., and Lara, L.
    [2016] Rapid re-inflation following the 2011–2012 rhyodacite eruption at Cordon Caulle volcano (Southern Andes) imaged by InSAR: Evidence for magma reservoir refill, Geophys. Res. Lett.43, 9552–9562. doi:10.1002/2016GL070066
    [Google Scholar]
  10. Katpady, D. N., Takewaka, K., and Yamaguchi, T.
    [2015] Development of geopolymer with pyroclastic flow deposit called Shirasu, Adv. Mater. Res.4, 179–192. doi:10.12989/amr.2015.4.3.179
    [Google Scholar]
  11. Kilgour, G., Manville, V., Della Pasqua, F., Graettinger, A., Hogdson, K. A., and Jolly, G. E.
    [2010] The 25 September 2007 eruption of Mount Ruapehu, New Zealand: direected ballistics, surtseyan jets and ice-slurry lahars, J. Volcanol. Geotherm. Res.191, 1–14. doi:10.1016/j.jvolgeores.2009.10.015
    [Google Scholar]
  12. Kong, D. L. Y., and Sanjayan, J. G.
    [2010] Effect of elevated temperatures on geopolymer paste, mortar and concrete, Cem. Concr. Res.40, 334–339. doi:10.1016/j.cemconres.2009.10.017
    [Google Scholar]
  13. Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., and Illikainen, M.
    [2018] One-part alkali-activated materials: A review, Cem. Concr. Res.103, 21–34. doi:10.1016/j.cemconres.2017.10.001
    [Google Scholar]
  14. MassazzaF.
    , Pozzolana and Pozzolanic Cements [2007] InP.Hewlett, Ed., Lea’s Chemistry of Cement and Concrete, Arnold, London, 1998, pp. 471–631.
    [Google Scholar]
  15. OstertagCK, YiCP
    [2007] Crack / fiber interaction and crack growth resistance behavior in microfiber reinforced mortar specimens. Mater Struct40:679–691.
    [Google Scholar]
  16. Pacheco-Torgal, F., Castro-Gomes, J., and Jalali, S.
    [2008] Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products, Constr. Build. Mater.22, 1305–1314. doi:10.1016/j.conbuildmat.2007.10.015
    [Google Scholar]
  17. Provis, J. L., and Bernal, S. A.
    [2015] Milestones in the analysis of alkali-activated binders, J. Sustain. Cem. Based Mater.4, 74–84. doi:10.1080/21650373.2014.958599
    [Google Scholar]
  18. Vanorio, T., and Kanitpanyacharoen, W.
    [2015] Rock physics of fibrous rocks akin to Roman concrete explains uplifts at Campi Flegrei Caldera, Science349, 617–621. doi:10.1126/science.aab1292
    [Google Scholar]
  19. Yokoyama, I., and Nazzaro, A.
    [2002], Anomalous movements with low seismic efficiency — Campi Flegrei, Italy and some examples in Japan, Ann. Geophys.45, 709–722. doi:10.4401/ag-3543
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error