1887

Abstract

Summary

Motivated by archaeological prospection with marine GPR in a pond that was part of the early medieval Charlemagne's Summit canal, we investigated which material contrasts can be expected and thus which signals can arise from remains of submerged or wooden constructions in the water column. In a three-month laboratory experiment we determined the physical parameters electric resistivity and dielectric permittivity of oak and spruce wood with increasing water moisture content. The laboratory measurements show resistivity values > 1000 Ωm for dry wood and > 400 Ωm for water moisture contents of 80 %. The relative dielectric permittivity values increased from 2 to 5 in the same range. Both parameters show anisotropy effects in and across fibre direction. The laboratory experiments suggest GPR material contrasts of 20%, which is in good accordance to the signals observed during the field measurements. They also reveal resistivity contrasts of 250 % whereas comparable seismic studies in literature show relative contrasts of 30-50 %.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201902489
2019-09-08
2020-05-26
Loading full text...

Full text loading...

References

  1. Arcone, S., Finnegan, D., & Boitnott, G.
    (2010). GPR characterization of a lacustrine UXO site. Geophysics, 75(4), WA221–WA239.
    [Google Scholar]
  2. Arnott, S. H., Dix, J. K., Best, A. I., & Gregory, D. J.
    (2005). Imaging of buried archaeological materials: The reflection properties of archaeological wood. Marine Geophysical Researches, 26(2-4), 135–144.
    [Google Scholar]
  3. Fediuk, A., Wilken, D., Wunderlich, T., Rabbel, W., Seeliger, M., Laufer, E., & Pirson, F.
    (2018). Marine seismic investigation of the ancient Kane harbour bay, Turkey. Quaternary International.
    [Google Scholar]
  4. Fu, L., Liu, S., & Liu, L.
    (2014). Internal structure characterization of living tree trunk cross-section using GPR: Numerical examples and field data analysis. In Proceedings of the 15th International Conference on Ground Penetrating Radar (pp. 155–160). IEEE.
    [Google Scholar]
  5. Hagrey, S. A., Meissner, R., Werban, U., Rabbel, W., & Ismaeil, A.
    (2004). Hydro-, bio-geophysics. The Leading Edge, 23(7), 670–674.
    [Google Scholar]
  6. Jol, H. M., & Albrecht, A.
    (2004). Searching for submerged lumber with ground penetrating radar: Rib lake, Wisconsin, USA. In Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004. GPR 2004. (pp. 601–604). IEEE.
    [Google Scholar]
  7. Kritikakis, G. S., Papadopoulos, N., Simyrdanis, K., & Theodoulou, T.
    (2015, October). Imaging of Shallow Underwater Ancient Ruins with ERT and Seismic Methods. In 8th Congress of the Balkan Geophysical Society.
    [Google Scholar]
  8. Müller, C., Woelz, S., Ersoy, Y., Boyce, J., Jokisch, T., Wendt, G., & Rabbel, W.
    (2009). Ultra-high-resolution marine 2D-3D seismic investigation of the Liman Tepe/Karantina Island archaeological site (Urla/Turkey). Journal of Applied Geophysics, 68(1), 124–134.
    [Google Scholar]
  9. Niemz, P., & Sonderegger, W.
    (2017). Holzphysik: Physik des Holzes und der Holzwerkstoffe. Carl Hanser Verlag GmbH Co KG.
    [Google Scholar]
  10. Ruffell, A.
    (2006). Under-water scene investigation using ground penetrating radar (GPR) in the search for a sunken jet ski, Northern Ireland. Science & Justice, 46(4), 221–230.
    [Google Scholar]
  11. Schön, J.
    (1983). Petrophysik: Physikalische Eigenschaften von Gesteinen und Mineralen. Akademie-Verlag.
    [Google Scholar]
  12. Seeliger, M., Brill, D., Feuser, S., Bartz, M., Erkul, E., Kelterbaum, D., Vött, A., Klein, C. & Brückner, H.
    (2014). The purpose and age of underwater walls in the Bay of Elaia of Western Turkey: a multidisciplinary approach. Geoarchaeology, 29(2), 138–155.
    [Google Scholar]
  13. Simyrdanis, K., Papadopoulos, N., Kim, J. H., Tsourlos, P., & Moffat, I.
    (2015). Archaeological investigations in the shallow seawater environment with electrical resistivity tomography. Near Surface Geophysics, 13(6), 601–611.
    [Google Scholar]
  14. Wunderlich, T., Wilken, D., Erkul, E., Rabbel, W., Vött, A., Fischer, P., Hadler, H., & Heinzelmann, M.
    (2018). The river harbour of Ostia Antica-stratigraphy, extent and harbour infrastructure from combined geophysical measurements and drillings. Quaternary International, 473, 55–65.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201902489
Loading
/content/papers/10.3997/2214-4609.201902489
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error