How can we harness the ambient vibrations that move the ground - and buildings - everywhere and all the time? I will discuss methods that use ambient seismic noise to characterize shallow subsurface structure. How can we track changes sensed by the seismic wavefield, related to water saturation and frozen ground?

Can we use these methods on buildings, bridges, larger civil structures, to continuously monitor the structural health status, and potentially detect the effects of damage? I will present results of studies that delve into these questions.


Article metrics loading...

Loading full text...

Full text loading...


  1. Bonnefoy-Claudet, S., Cotton, F., & Bard, P. Y.
    (2006). The nature of noise wavefield and its applications for site effects studies: A literature review.Earth-Science Reviews, 79(3–4), 205–227.
    [Google Scholar]
  2. Boué, P., Poli, P., Campillo, M., Pedersen, H., Briand, X., & Roux, P.
    (2013). Teleseismic correlations of ambient seismic noise for deep global imaging of the Earth.Geophysical Journal International, 194(2), 844–848.
    [Google Scholar]
  3. Colombi, A., Chaput, J., Brenguier, F., Hillers, G., Roux, P., & Campillo, M.
    (2014). On the temporal stability of the coda of ambient noise correlations.Comptes Rendus Geoscience, 346(11–12), 307–316.
    [Google Scholar]
  4. Gouédard, P., Stehly, L., Brenguier, F., Campillo, M., Colin de Verdière, Y., Larose, E., Margerin, L., Roux, P., Sánchez-Sesma, F. J., Shapiro, N. M. and Weaver, R. L.
    (2008), Cross‐correlation of random fields: mathematical approach and applications.Geophysical Prospecting, 56: 375–393.
    [Google Scholar]
  5. Hadziioannou, C., Larose, E., Coutant, O., Roux, P., & Campillo, M.
    (2009). Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments.The Journal of the Acoustical Society of America, 125(6), 3688–3695.
    [Google Scholar]
  6. Mordret, A., Mikesell, T. D., Harig, C., Lipovsky, B. P., & Prieto, G. A.
    (2016). Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise.Science advances, 2(5), e1501538.
    [Google Scholar]
  7. Nakata, N., Chang, J. P., Lawrence, J. F., & Boué, P.
    (2015). Body wave extraction and tomography at Long Beach, California, with ambient‐noise interferometry.Journal of Geophysical Research: Solid Earth, 120(2), 1159–1173.
    [Google Scholar]
  8. Poupinet, G., Ellsworth, W. L., & Frechet, J.
    (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California.Journal of Geophysical Research: Solid Earth, 89(B7), 5719–5731.
    [Google Scholar]
  9. Salvermoser, J., Hadziioannou, C., & Stähler, S. C.
    (2015). Structural monitoring of a highway bridge using passive noise recordings from street traffic.The Journal of the Acoustical Society of America, 138(6), 3864–3872.
    [Google Scholar]
  10. Sens-Schönfelder, C., & Wegler, U.
    (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia.Geophysical research letters, 33(21).
    [Google Scholar]
  11. Wapenaar, K., Draganov, D., Snieder, R., Campman, X., & Verdel, A.
    (2010). Tutorial on seismic interferometry: Part 1—Basic principles and applications.Geophysics, 75(5), 75A195–75A209.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error