1887

Abstract

Summary

An increasing number of Ground-Penetrating Radar (GPR) studies takes benefit from illumination capabilities provided by dense acquisitions between boreholes. Traveltime tomography, migration and full waveform inversion provide high-resolution images to be interpreted. Tomography is often performed under an isotropic assumption, although anisotropy may exist at different scales. A new tomography approach is investigated based on an anisotropic Eikonal solver for the forward problem and an adjoint formulation for inverse problem. The misfit gradient is computed directly without expressing the sensitivity matrix, leading to explicit contribution of anisotropic parameters. The parametrization of elliptical anisotropy based on vertical and horizontal velocities is preferred to a parametrization based on Thomsen parameters for a realistic synthetic example, inspired from a real example of GPR transmission tomography between two boreholes in a carbonate environment where an old gallery exists. The vertical velocity is nicely recovered while the anisotropy contribution stays small. However, the real application provides similar results either through a layered isotropic model or through a smoother anisotropic model. Geological information is, therefore, needed for further specific interpretation.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201902594
2019-09-08
2020-02-23
Loading full text...

Full text loading...

References

  1. R. D.Stewart and R. R.Unterberger
    . “Seeing through rock salt with radar.” Geophysics, 1976, vol. 41, no 1, p. 123–132.
    [Google Scholar]
  2. C. P. F.Ulriksen
    . “Application of impulse radar to civil engineering”. Lund Univ. Dr. Thesis, 1982.
    [Google Scholar]
  3. C. C.Paige, and M. A.Saunders
    . “Algorithm 583: LSQR: Sparse linear equations and least squares problems”. ACM Transactions on Mathematical Software, 1982, vol. 8, no 2, p. 195–209.
    [Google Scholar]
  4. J.Nocedal
    . “Updating quasi-Newton matrices with limited storage”. Mathematics of computation, 1980, vol. 35, no 151, p. 773–782.
    [Google Scholar]
  5. S.Leung, and J.Qian
    . “An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals.” Communications in Mathematical Sciences, 2006, vol. 4, no 1, p. 249–266.
    [Google Scholar]
  6. C.Taillandier, M.Noble, H.Chauris, and H.Calandra
    . “First-arrival traveltime tomography based on the adjoint-state method”. Geophysics, 2009, vol. 74, no 6, p. WCB1–WCB10.
    [Google Scholar]
  7. U. B.Waheed, G.Flagg, and C. E.Yarman
    . “First-arrival traveltime tomography for anisotropic media using the adjoint-state method”. Geophysics, 2016, vol. 81, no 4, p. R147–R155.
    [Google Scholar]
  8. F. B.Tavakoli, S.Operto, A.Ribodetti, and J.Virieux
    . “Matrix-free anisotropic slope tomography: Theory and application”. Geophysics, 2018, vol. 84, no 1, p. R35–R57.
    [Google Scholar]
  9. D. W.Vasco, J. E.PetersonJr, and K. H.Lee
    . “Ground-penetrating radar velocity tomography in heterogeneous and anisotropic media”. Geophysics, 1997, vol. 62, no 6, p. 1758–1773.
    [Google Scholar]
  10. P.Le Bouteiller, M.Benjemaa, L.Metivier, and J.Virieux
    . “A discontinuous Galerkin fast-sweeping Eikonal solver for fast and accurate traveltime computation in 3D tilted anisotropic media”. Geophysics, 2018, vol. 84, no 2, p. 1–55.
    [Google Scholar]
  11. P.Le Bouteiller
    . “Eulerian approach of Hamilton-Jacobi equation with a discontinuous Galerkin method in heterogeneous anisotropic medium: Application to seismic imaging”. Université Grenoble Alpes. Ph.D. thesis, 2019.
    [Google Scholar]
  12. L.Thomsen
    . “Weak elastic anisotropy”. Geophysics, 1986, vol. 51, no 10, p. 1954–1966.
    [Google Scholar]
  13. M. G.Crandall, and P. L.Lions
    . “Viscosity solutions of Hamilton-Jacobi equations”. Transactions of the American mathematical society, 1983, vol. 277, no 1, p. 1–42.
    [Google Scholar]
  14. Y.Cheng, and Z.Wang
    . “A new discontinuous Galerkin finite element method for directly solving the HamiltonJacobi equations”. Journal of Computational Physics, 2014, vol. 268, p. 134–153.
    [Google Scholar]
  15. P.Le Bouteiller, M.Benjemaa, L.Metivier, and J.Virieux
    . “An accurate discontinuous Galerkin method for solving point-source Eikonal equation in 2-D heterogeneous anisotropic media”. Geophysical Journal International, 2018, vol. 212, no 3, p. 1498–1522.
    [Google Scholar]
  16. R. E.Plessix
    . “A review of the adjoint-state method for computing the gradient of a functional with geophysical applications”. Geophysical Journal International, 2006, vol. 167, no 2, p. 495–503.
    [Google Scholar]
  17. L.Metivier, and R.Brossier
    . “The SEISCOPE optimization toolbox: A large-scale nonlinear optimization library based on reverse communication”. Geophysics, 2016, vol. 81, no 2, p. F1–F15.
    [Google Scholar]
  18. J.Nocedal, and S. J.Wright
    . Numerical optimization. 2nd ed: Springer, 2006.
    [Google Scholar]
  19. H.Pinard, S.Garambois, L.Mtivier, M.Dietrich, G.Snchal, and D.Rousset
    . “Full-waveform inversion of GPR data acquired between boreholes in Rustrel carbonates”. In : E3S Web of Conferences. EDP Sciences, 2016. p. 01002.
    [Google Scholar]
  20. I.Bouaziz
    . “Etude d’une carotte de la plateforme Urgonienne du Vaucluse: Approches sédimentologie, pétrophysique et numérique”. Université de Pau et des Pays de l’Adour. Mémorie de D.E.A, 2015
    [Google Scholar]
  21. C.Matonti, Y.Guglielmi, S.Viseur, S.Garambois, and L.Marie
    . “P-wave velocity anisotropy related to sealed fractures reactivation tracing the structural diagenesis in carbonates”. Tectonophysics, 2017, vol. 705, p. 80–92
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201902594
Loading
/content/papers/10.3997/2214-4609.201902594
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error